ترغب بنشر مسار تعليمي؟ اضغط هنا

The MuPix Telescope: A Thin, high Rate Tracking Telescope

58   0   0.0 ( 0 )
 نشر من قبل Lennart Huth
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MuPix Telescope is a particle tracking telescope, optimized for tracking low momentum particles and high rates. It is based on the novel High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), designed for the Mu3e tracking detector. The telescope represents a first application of the HV-MAPS technology and also serves as test bed of the Mu3e readout chain. The telescope consists of up to eight layers of the newest prototypes, the MuPix7 sensors, which send data self-triggered via fast serial links to FPGAs, where the data is time-ordered and sent to the PC. A particle hit rate of 1 MHz per layer could be processed. Online tracking is performed with a subset of the incoming data. The general concept of the telescope, chip architecture, readout concept and online reconstruction are described. The performance of the sensor and of the telescope during test beam measurements are presented.



قيم البحث

اقرأ أيضاً

The Timepix particle tracking telescope has been developed as part of the LHCb VELO Upgrade project, supported by the Medipix Collaboration and the AIDA framework. It is a primary piece of infrastructure for the VELO Upgrade project and is being used for the development of new sensors and front end technologies for several upcoming LHC trackers and vertexing systems. The telescope is designed around the dual capability of the Timepix ASICs to provide information about either the deposited charge or the timing information from tracks traversing the 14 x 14mm matrix of 55 x 55 um pixels. The rate of reconstructed tracks available is optimised by taking advantage of the shutter driven readout architecture of the Timepix chip, operated with existing readout systems. Results of tests conducted in the SPS North Area beam facility at CERN show that the telescope typically provides reconstructed track rates during the beam spills of between 3.5 and 7.5 kHz, depending on beam conditions. The tracks are time stamped with 1 ns resolution with an efficiency of above 98% and provide a pointing resolution at the centre of the telescope of 1.6 um . By dropping the time stamping requirement the rate can be increased to 15 kHz, at the expense of a small increase in background. The telescope infrastructure provides CO2 cooling and a flexible mechanical interface to the device under test, and has been used for a wide range of measurements during the 2011-2012 data taking campaigns.
A fiber detector concept is suggested allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occuppancy. The fibers should be radiation hard for 1 Mrad/year. Corresponding prototypes have been b uild and tested at a 3 GeV electron beam at DESY. Preliminary results of these tests indicate that the design goal for the detector is reached.
The european Fazia collaboration aims at building a new modular array for charged product identification to be employed for heavy-ion studies. The elementary module of the array is a Silicon-Silicon-CsI telescope, optimized for ion identification als o via pulse shape analysis. The achievement of top performances imposes specific electronics which has been developed by FAZIA and features high quality charge and current preamplifiers, coupled to fully digital front-end. During the initial R&D phase, original and novel solutions have been tested in prototypes, obtaining unprecedented ion identification capabilities. FAZIA is now constructing a demonstrator array consisting of about two hundreds telescopes arranged in a compact and transportable configuration. In this contribution, we mainly summarize some aspects studied by FAZIA to improve the ion identification. Then we will briefly discuss the FAZIA program centered on experiments to be done with the demonstrator. First results on the isospin dynamics obtained with a reduced set-up demonstrate well the performance of the telescope and represent a good starting point towards future investigations with both stable and exotic beams.
A fiber detector concept has been realized allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occupancy. Three full size prototypes have been build by different producers and tested at a 3 G eV electron beam at DESY. After 3 m of light guides 8-10 photoelectrons were registrated by multichannel photomultipliers providing an efficiency of more than 99%. Using all available data a resolution of 0.086 mm was measured.
A PC based high speed silicon microstrip beam telescope consisting of several independent modules is presented. Every module contains an AC-coupled double sided silicon microstrip sensor and a complete set of analog and digital signal processing elec tronics. A digital bus connects the modules with the DAQ PC. A trigger logic unit coordinates the operation of all modules of the telescope. The system architecture allows easy integration of any kind of device under test into the data acquisition chain. Signal digitization, pedestal correction, hit detection and zero suppression are done by hardware inside the modules, so that the amount of data per event is reduced by a factor of 80 compared to conventional readout systems. In combination with a two level data acquisition scheme, this allows event rates up to 7.6 kHz. This is a factor of 40 faster than conventional VME based beam telescopes while comparable analog performance is maintained achieving signal to noise ratios of up to 70:1. The telescope has been tested in the SPS testbeam at CERN. It has been adopted as the reference instrument for testbeam studies for the ATLAS pixel detector development.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا