ﻻ يوجد ملخص باللغة العربية
Topologically protected defects have been observed and studied in a wide range of fields, such as cosmology, spin systems, cold atoms and optics as they are quenched across a phase transition into an ordered state. Revealing their origin and control is becoming increasingly important field of research, as they limit the coherence of the system and its ability to approach a fully ordered state. Here, we present dissipative topological defects in a 1-D ring network of phase-locked lasers, and show how their formation is related to the Kibble-Zurek mechanism and is governed in a universal manner by two competing time scales of the lasers, namely the phase locking time and synchronization time of their amplitude fluctuations. The ratio between these two time scales depends on the system parameters such as gain and coupling strength, and thus offers the possibility to control the probability of topological defects in the system. Enabling the system to dissipate to the fully ordered, defect-free state can be exploited for solving hard combinatorial optimization problems in various fields. As opposed to unitary systems where quenching is obtained via external cooling mostly through the edges, our dissipative system is kept strictly uniform even for fast quenches.
The dynamics of dissipative topological defects in a system of coupled phase oscillators, arranged in one and two-dimensional arrays, is numerically investigated using the Kuramoto model. After an initial rapid decay of the number of topological defe
Edge modes in topological insulators are known to be robust against defects. We investigate if this also holds true when the defect is not static, but varies in time. We study the influence of defects with time-dependent coupling on the robustness of
A rich variety of specific multidomain textures recently observed in antiferromagnetically coupled multilayers with perpendicular anisotropy include regular (equilibrium) multidomain states as well as different types of topological magnetic defects.
Bosons hopping across sites and interacting on-site are the essence of the Bose-Hubbard model (BHM). Inspired by the success of BHM simulators with atoms in optical lattices, proposals for implementing the BHM with photons in coupled nonlinear caviti
Electromagnetic topological insulators have been explored extensively due to the robust edge states they support. In this work, we propose a topological electromagnetic system based on a line defect in topologically nontrivial photonic crystals (PCs)