ترغب بنشر مسار تعليمي؟ اضغط هنا

Smooth and sharp creation of a pointlike source for a $(3+1)$-dimensional quantum field

133   0   0.0 ( 0 )
 نشر من قبل Gabor Kunstatter
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the smooth and sharp creation of a pointlike source for a quantised massless scalar field in $(3+1)$-dimensional Minkowski spacetime, as a model for the breakdown of correlations that has been proposed to occur at the horizon of an evaporating black hole. The creation is implemented by a time-dependent self-adjointness parameter at the excised spatial origin. In a smooth creation, the renormalised energy density $langle T_{00} rangle$ is well defined away from the source, but it is unbounded both above and below: the outgoing pulse contains an infinite negative energy, while a cloud of infinite positive energy lingers near the fully-formed source. In the sharp creation limit, $langle T_{00} rangle$ diverges everywhere in the timelike future of the creation event, and so does the response of an Unruh-DeWitt detector that operates in the timelike future of the creation event. The source creation is significantly more singular than the corresponding process in $1+1$ dimensions, analysed previously, and it may be sufficiently singular to break quantum correlations as proposed in a black hole spacetime.



قيم البحث

اقرأ أيضاً

A complete quantum field theoretic study of charged and neutral particle creation in a rapidly/adiabatically expanding Friedman-Robertson-Walker metric for an O(4) scalar field theory with quartic interactions (admitting a phase transition) is given. Quantization is carried out by inclusion of quantum fluctuations. We show that the quantized Hamiltonian admits an su(1,1) invariance. The squeezing transformation diagonalizes the Hamiltonian and shows that the dynamical states are squeezed states. Allowing for different forms of the expansion parameter, we show how the neutral and charged particle production rates change as the expansion is rapid or adiabatic. The effects of the expansion rate versus the symmetry restoration rate on the squeezing parameter is shown.
181 - Jun Nishimura 2012
We study the Lorentzian version of the type IIB matrix model as a nonperturbative formulation of superstring theory in (9+1)-dimensions. Monte Carlo results show that not only space but also time emerges dynamically in this model. Furthermore, the re al-time dynamics extracted from the matrices turns out to be remarkable: 3 out of 9 spatial directions start to expand at some critical time. This can be interpreted as the birth of our Universe.
We show that one can reduce the coupled system of seven field equations of the (3+1)-dimensional gauged Skyrme model to the Heun equation (which, for suitable choices of the parameters, can be further reduced to the Whittaker-Hill equation) in two no n-trivial topological sectors. Hence, one can get a complete analytic description of gauged solitons in (3+1) dimensions living within a finite volume in terms of classic results in the theory of differential equations and Kummers con uent functions. We consider here two types of gauged solitons: gauged Skyrmions and gauged time-crystals (namely, gauged solitons periodic in time, whose time-period is protected by a winding number). The dependence of the energy of the gauged Skyrmions on the Baryon charge can be determined explicitly. The theory of Kummers confluent functions leads to a quantization condition for the period of the time-crystals. Likewise, the theory of Sturm-Liouville operators gives rise to a quantization condition for the volume occupied by the gauged Skyrmions. The present analysis also discloses that resurgent techniques are very well suited to deal with the gauged Skyrme model as well. In particular, we discuss a very nice relation between the electromagnetic perturbations of the gauged Skyrmions and the Mathieu equation which allows to use many of the modern resurgence techniques to determine the behavior of the spectrum of these perturbations.
200 - Mitsutoshi Fujita 2018
We analyze the holographic subregion complexity in a $3d$ black hole with the vector hair. This $3d$ black hole is dual to a $1+1$ dimensional $p$-wave superconductor. We probe the black hole by changing the size of the interval and by fixing $q$ or $T$. We show that the universal part is finite across the superconductor phase transition and has competitive behaviors different from the finite part of entanglement entropy. The behavior of the subregion complexity depends on the gravitational coupling constant divided by the gauge coupling constant. When this ratio is less than the critical value, the subregion complexity increases as temperature becomes low. This behavior is similar to the one of the holographic $1+1$ dimensional $s$-wave superconductor arXiv:1704.00557. When the ratio is larger than the critical value, the subregion complexity has a non-monotonic behavior as a function of $q$ or $T$. We also find a discontinuous jump of the subregion complexity as a function of the size of the interval. The subregion complexity has the maximum when it wraps the almost entire spatial circle. Due to competitive behaviors between normal and condensed phases, the universal term in the condensed phase becomes even smaller than that of the normal phase by probing the black hole horizon at a large interval. It implies that the formed condensate decreases the subregion complexity like the case of the entanglement entropy.
We study the stability of static as well as of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical horizon topology. We observe a non-linear instability related to the condensation of a charged, tac hyonic scalar field and construct hairy black hole solutions of the full system of coupled Einstein, Maxwell and scalar field equations. We observe that the limiting solution for small horizon radius is either a hairy soliton solution or a singular solution that is not a regular extremal solution. Within the context of the gauge/gravity duality the condensation of the scalar field describes a holographic conductor/superconductor phase transition on the surface of a sphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا