ﻻ يوجد ملخص باللغة العربية
We study the Lorentzian version of the type IIB matrix model as a nonperturbative formulation of superstring theory in (9+1)-dimensions. Monte Carlo results show that not only space but also time emerges dynamically in this model. Furthermore, the real-time dynamics extracted from the matrices turns out to be remarkable: 3 out of 9 spatial directions start to expand at some critical time. This can be interpreted as the birth of our Universe.
The emergence of (3+1)-dimensional expanding space-time in the Lorentzian type IIB matrix model is an intriguing phenomenon which was observed in Monte Carlo studies of this model. In particular, this may be taken as a support to the conjecture that
The Lorentzian type IIB matrix model has been studied as a promising candidate for a nonperturbative formulation of superstring theory. In particular, the emergence of (3+1)D expanding space-time was observed by Monte Carlo studies of this model. It
We present evidence that recent numerical results from the reduced classical equations of the Lorentzian IIB matrix model can be interpreted as corresponding to the emergence of an expanding universe. In addition, we propose an effective metric to de
Within the context of a bosonized theory, we evaluate the current-current correlation functions corresponding to a massive Dirac field in 2+1 dimensions, which is constrained to a spatial half-plane. We apply the result to the evaluation of induced v
The type IIB matrix model is a promising candidate for a nonperturbative formulation of superstring theory. In the Lorentzian version, in particular, the emergence of (3+1)D expanding space-time was observed by Monte Carlo studies of this model. Here