ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast Emission and Detection of a Single-Electron Gaussian Wave Packet: A Theoretical Study

142   0   0.0 ( 0 )
 نشر من قبل Sungguen Ryu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating and detecting a prescribed single-electron state is an important step towards solid-state fermion optics. We propose how to generate an electron in a Gaussian state, using a quantum-dot pump with gigahertz operation and realistic parameters. With the help of a strong magnetic field, the electron occupies a coherent state in the pump, insensitive to the details of nonadiabatic evolution. The state changes during the emission from the pump, governed by competition between the Landauer-Buttiker traversal time and the passage time. When the former is much shorter than the latter, the emitted state is a Gaussian wave packet. The Gaussian packet can be identified by using a dynamical potential barrier, with a resolution reaching the Heisenberg minimal uncertainty $hbar/2$.



قيم البحث

اقرأ أيضاً

We report an experimental technique to measure and manipulate the arrival-time and energy distributions of electrons emitted from a semiconductor electron pump, operated as both a single-electron source and a two-electron source. Using an energy-sele ctive detector whose transmission we control on picosecond timescales, we can measure directly the electron arrival-time distribution and we determine the upper-bound to the distribution width to be 30 ps. We study the effects of modifying the shape of the voltage waveform that drives the electron pump, and show that our results can be explained by a tunneling model of the emission mechanism. This information was in turn used to control the emission-time difference and energy gap between a pair of electrons.
Observing changes in molecular structure requires atomic-scale {AA}ngstrom and femtosecond spatio-temporal resolution. We use the Fourier transform (FT) variant of laser-induced electron diffraction (LIED), FT-LIED, to directly retrieve the molecular structure of ${rm H_2O^+}$ with picometre and femtosecond resolution without a priori knowledge of the molecular structure nor the use of retrieval algorithms or ab initio calculations. We identify a symmetrically stretched ${rm H_2O^+}$ field-dressed structure that is most likely in the ground electronic state. We subsequently study the nuclear response of an isolated water molecule to an external laser field at four different field strengths. We show that upon increasing the laser field strength from 2.5 to 3.8 V/{AA}, the O-H bond is further stretched and the molecule slightly bends. The observed ultrafast structural changes lead to an increase in the dipole moment of water and, in turn, a stronger dipole interaction between the nuclear framework of the molecule and the intense laser field. Our results provide important insights into the coupling of the nuclear framework to a laser field as the molecular geometry of ${rm H_2O^+}$ is altered in the presence of an external field.
We report the two-dimensional propagation of photoinduced spin wave packets in Bi-doped rare-earth iron garnet. Spin waves were excited nonthermally and impulsively by a circularly polarized light pulse via the inverse Faraday effect. Space- and time resolved spin waves were detected with a magneto-optical pump-probe technique. We investigated propagation in two directions, parallel and perpendicular to the magnetic field. Backward volume magnetostatic waves (BVMSWs) were detected in both directions. The frequency of BVMSWs depends on the propagation direction. The experimental results agreed well with the dispersion relation of BVMSWs.
Magnetic tunnel junctions comprising of an insulator sandwiched between two ferromagnetic films are the simplest spintronic devices. Theoretically, these can be modeled by a metallic Hamiltonian in both the lattice and the continuum with an addition of Zeeman field. We calculate conductance at arbitrary orientations of the easy axes of the two ferromagnets. When mapped, the lattice and the continuum models show a discrepancy in conductance in the limit of a large Zeeman field. We resolve the discrepancy by modeling the continuum theory in an appropriate way.
Quantum technologies involving qubit measurements based on electronic interferometers rely critically on accurate single-particle emission. However, achieving precisely timed operations requires exquisite control of the single-particle sources in the time domain. Here, we demonstrate accurate control of the emission time statistics of a dynamic single-electron transistor by measuring the waiting times between emitted electrons. By ramping up the modulation frequency, we controllably drive the system through a crossover from adiabatic to nonadiabatic dynamics, which we visualize by measuring the temporal fluctuations at the single-electron level and explain using detailed theory. Our work paves the way for future technologies based on the ability to control, transmit, and detect single quanta of charge or heat in the form of electrons, photons, or phonons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا