ﻻ يوجد ملخص باللغة العربية
Optical tomographic imaging of biological specimen bases its reliability on the combination of both accurate experimental measures and advanced computational techniques. In general, due to high scattering and absorption in most of the tissues, multi view geometries are required to reduce diffuse halo and blurring in the reconstructions. Scanning processes are used to acquire the data but they inevitably introduces perturbation, negating the assumption of aligned measures. Here we propose an innovative, registration free, imaging protocol implemented to image a human tumor spheroid at mesoscopic regime. The technique relies on the calculation of autocorrelation sinogram and object autocorrelation, finalizing the tomographic reconstruction via a three dimensional Gerchberg Saxton algorithm that retrieves the missing phase information. Our method is conceptually simple and focuses on single image acquisition, regardless of the specimen position in the camera plane. We demonstrate increased deep resolution abilities, not achievable with the current approaches, rendering the data alignment process obsolete.
Label-free imaging approaches seek to simplify and augment histopathologic assessment by replacing the current practice of staining by dyes to visualize tissue morphology with quantitative optical measurements. Quantitative phase imaging (QPI) operat
Acoustic-resolution optoacoustic microscopy (AR-OAM) retrieves anatomical and functional contrast from living tissues at depths not reachable with optical microscopy. The imaging performance of AR-OAM has been advanced with image reconstruction algor
Positron emission tomography, like many other tomographic imaging modalities, relies on an image reconstruction step to produce cross-sectional images from projection data. Detection and localization of the back-to-back annihilation photons produced
Precise quantitative delineation of tumor hypoxia is essential in radiation therapy treatment planning to improve the treatment efficacy by targeting hypoxic sub-volumes. We developed a combined imaging system of positron emission tomography (PET) an
T2-Shuffling reconstructs multiple sharp T2-weighted images from a single volumetric fast spin-echo (3D-FSE) scan. Wave-CAIPI is a parallel imaging technique that achieves good reconstruction at high accelerations through additional sinusoidal gradie