ترغب بنشر مسار تعليمي؟ اضغط هنا

Wireless Fractal Cellular Networks

103   0   0.0 ( 0 )
 نشر من قبل Xiaohu Ge
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the seamless coverage of wireless cellular networks in modern society, it is interesting to consider the shape of wireless cellular coverage. Is the shape a regular hexagon, an irregular polygon, or another complex geometrical shape? Based on fractal theory, the statistical characteristic of the wireless cellular coverage boundary is determined by the measured wireless cellular data collected from Shanghai, China. The measured results indicate that the wireless cellular coverage boundary presents an extremely irregular geometrical shape, which is also called a statistical fractal shape. Moreover, the statistical fractal characteristics of the wireless cellular coverage boundary have been validated by values of the Hurst parameter estimated in angular scales. The statistical fractal characteristics of the wireless cellular coverage boundary can be used to evaluate and design the handoff scheme of mobile user terminals in wireless cellular networks.



قيم البحث

اقرأ أيضاً

Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to p rovide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential applications and its design challenges are presented. In particular, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Furthermore, a promising underwater localization and positioning scheme based on this cellular network is presented. Finally, probable design challenges such as cell edge coverage, blockage avoidance, power control and increasing the network capacity are addressed.
147 - Qiao Li , Yifei Wei , Mei Song 2016
An energy cooperation policy for energy harvesting wireless sensor networks (WSNs) with wireless power transfer is proposed in this paper to balance the energy at each sensor node and increase the total energy utilization ratio of the whole WSNs. Con sidering the unbalanced spatio-temporal properties of the energy supply across the deployment terrain of energy harvesting WSNs and the dynamic traffic load at each sensor node, the energy cooperation problem among sensor nodes is decomposed into two steps: the local energy storage at each sensor node based on its traffic load to meet its own needs; within the energy storage procedure sensor nodes with excess energy transmit a part of their energy to nodes with energy shortage through the energy trading. Inventory theory and game theory are respectively applied to solving the local energy storage problem at each sensor node and the energy trading problem among multiple sensor nodes. Numerical results show that compared with the static energy cooperation method without energy trading, the Stackelberg Model based Game we design in this paper can significantly improve the trading volume of energy thereby increasing the utilization ratio of the harvested energy which is unevenly distributed in the WSNs.
194 - Anais Vergne 2013
Simplicial homology is a tool that provides a mathematical way to compute the connectivity and the coverage of a cellular network without any node location information. In this article, we use simplicial homology in order to not only compute the topo logy of a cellular network, but also to discover the clusters of nodes still with no location information. We propose three algorithms for the management of future cellular networks. The first one is a frequency auto-planning algorithm for the self-configuration of future cellular networks. It aims at minimizing the number of planned frequencies while maximizing the usage of each one. Then, our energy conservation algorithm falls into the self-optimization feature of future cellular networks. It optimizes the energy consumption of the cellular network during off-peak hours while taking into account both coverage and user traffic. Finally, we present and discuss the performance of a disaster recovery algorithm using determinantal point processes to patch coverage holes.
157 - Sarabjot Singh 2019
Wireless traffic attributable to machine learning (ML) inference workloads is increasing with the proliferation of applications and smart wireless devices leveraging ML inference. Owing to limited compute capabilities at these edge devices, achieving high inference accuracy often requires coordination with a remote compute node or cloud over the wireless cellular network. The accuracy of this distributed inference is, thus, impacted by the communication rate and reliability offered by the cellular network. In this paper, an analytical framework is proposed to characterize inference accuracy as a function of cellular network design. Using the developed framework, it is shown that cellular network should be provisioned with a minimum density of access points (APs) to guarantee a target inference accuracy, and the inference accuracy achievable at asymptotically high AP density is limited by the air-interface bandwidth. Furthermore, the minimum accuracy required of edge inference to deliver a target inference accuracy is shown to be inversely proportional to the density of APs and the bandwidth.
Fifth-generation (5G) systems will extensively employ radio access network (RAN) softwarization. This key innovation enables the instantiation of virtual cellular networks running on different slices of the shared physical infrastructure. In this pap er, we propose the concept of Private Cellular Connectivity as a Service (PCCaaS), where infrastructure providers deploy covert network slices known only to a subset of users. We then present SteaLTE as the first realization of a PCCaaS-enabling system for cellular networks. At its core, SteaLTE utilizes wireless steganography to disguise data as noise to adversarial receivers. Differently from previous work, however, it takes a full-stack approach to steganography, contributing an LTE-compliant steganographic protocol stack for PCCaaS-based communications, and packet schedulers and operations to embed covert data streams on top of traditional cellular traffic (primary traffic). SteaLTE balances undetectability and performance by mimicking channel impairments so that covert data waveforms are almost indistinguishable from noise. We evaluate the performance of SteaLTE on an indoor LTE-compliant testbed under different traffic profiles, distance and mobility patterns. We further test it on the outdoor PAWR POWDER platform over long-range cellular links. Results show that in most experiments SteaLTE imposes little loss of primary traffic throughput in presence of covert data transmissions (< 6%), making it suitable for undetectable PCCaaS networking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا