ﻻ يوجد ملخص باللغة العربية
We consider the stochastic heat equation with a multiplicative white noise forcing term under standard intermitency conditions. The main finding of this paper is that, under mild regularity hypotheses, the a.s.-boundedness of the solution $xmapsto u(t,,x)$ can be characterized generically by the decay rate, at $pminfty$, of the initial function $u_0$. More specifically, we prove that there are 3 generic boundedness regimes, depending on the numerical value of $Lambda:= lim_{|x|toinfty} |log u_0(x)|/(log|x|)^{2/3}$.
We consider a family of nonlinear stochastic heat equations of the form $partial_t u=mathcal{L}u + sigma(u)dot{W}$, where $dot{W}$ denotes space-time white noise, $mathcal{L}$ the generator of a symmetric Levy process on $R$, and $sigma$ is Lipschitz
The Initial-Boundary Value Problem for the heat equation is solved by using a new algorithm based on a random walk on heat balls. Even if it represents a sophisticated generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Diri
We investigate the compact interface property in a recently introduced variant of the stochastic heat equation that incorporates dormancy, or equivalently seed banks. There individuals can enter a dormant state during which they are no longer subject
Consider the stochastic heat equation $partial_t u = (frac{varkappa}{2})Delta u+sigma(u)dot{F}$, where the solution $u:=u_t(x)$ is indexed by $(t,x)in (0, infty)timesR^d$, and $dot{F}$ is a centered Gaussian noise that is white in time and has spatia
This paper studies the nonlinear one-dimensional stochastic heat equation driven by a Gaussian noise which is white in time and which has the covariance of a fractional Brownian motion with Hurst parameter 1/4textless{}Htextless{}1/2 in the space var