ﻻ يوجد ملخص باللغة العربية
We investigate the statistical arrow of time for a quantum system being monitored by a sequence of measurements. For a continuous qubit measurement example, we demonstrate that time-reversed evolution is always physically possible, provided that the measurement record is also negated. Despite this restoration of dynamical reversibility, a statistical arrow of time emerges, and may be quantified by the log-likelihood difference between forward and backward propagation hypotheses. We then show that such reversibility is a universal feature of non-projective measurements, with forward or backward Janus measurement sequences that are time-reversed inverses of each other.
Why time is a one-way corridor? Whats the origin of the arrow of time? We attribute the thermodynamic arrow of time as the direction of increasing quantum state complexity. Inspired by the work of Nielsen, Susskind and Micadei, we checked this hypoth
Uncovering the origin of the arrow of time remains a fundamental scientific challenge. Within the framework of statistical physics, this problem was inextricably associated with the second law of thermodynamics, which declares that entropy growth pro
Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of
We define the hitting (or absorbing) time for the case of continuous quantum walks by measuring the walk at random times, according to a Poisson process with measurement rate $lambda$. From this definition we derive an explicit formula for the hittin
A profound quest of statistical mechanics is the origin of irreversibility - the arrow of time. New stimulants have been provided, thanks to unprecedented degree of control reached in experiments with isolated quantum systems and rapid theoretical de