ترغب بنشر مسار تعليمي؟ اضغط هنا

Irreversibility and the arrow of time in a quenched quantum system

194   0   0.0 ( 0 )
 نشر من قبل Mauro Paternostro
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field and experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time-reverse. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.



قيم البحث

اقرأ أيضاً

Uncovering the origin of the arrow of time remains a fundamental scientific challenge. Within the framework of statistical physics, this problem was inextricably associated with the second law of thermodynamics, which declares that entropy growth pro ceeds from the systems entanglement with the environment. It remains to be seen, however, whether the irreversibility of time is a fundamental law of nature or whether, on the contrary, it might be circumvented. Here we show that, while in nature the complex conjugation needed for time reversal is exponentially improbable, one can design a quantum algorithm that includes complex conjugation and thus reverses a given quantum state. Using this algorithm on an IBM quantum computer enables us to experimentally demonstrate a backward time dynamics for an electron scattered on a two-level impurity.
Maxwells demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this intelligent observer is capable of compensating entropy production (or extracting work), apparently challenging th e second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation between information-theoretic quantities empowering the design of an efficient Maxwells demon in a quantum system. The demon is experimentally implemented as a spin-1/2 quantum memory that acquires information, and employs it to control the dynamics of another spin-1/2 system, through a natural interaction. Noise and imperfections in this protocol are investigated by the assessment of its effectiveness. This realization provides experimental evidence that the irreversibility on a non-equilibrium dynamics can be mitigated by assessing microscopic information and applying a feed-forward strategy at the quantum scale.
We investigate the link between information and thermodynamics embodied by Landauers principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature re servoir. We demonstrate that Landauers principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.
We investigate the influence of a weakly nonlinear Josephson bath consisting of a chain of Josephson junctions on the dynamics of a small quantum system (LC oscillator). Focusing on the regime where the charging energy is the largest energy scale, we perturbatively calculate the correlation function of the Josephson bath to the leading order in the Josephson energy divided by the charging energy while keeping the cosine potential exactly. When the variation of the charging energy along the chain ensures fast decay of the bath correlation function, the dynamics of the LC oscillator that is weakly and capacitively coupled to the Josephson bath can be solved through the Markovian master equation. We establish a duality relation for the Josephson bath between the regimes of large charging and Josephson energies respectively. The results can be applied to cases where the charging energy either is nonuniformly engineered or disordered in the chain. Furthermore, we find that the Josephson bath may become non-Markovian when the temperature is increased beyond the zero-temperature limit in that the bath correlation function gets shifted by a constant and does not decay with time.
Elucidating the energy transfer between a quantum system and a reservoir is a central issue in quantum non-equilibrium thermodynamics, which could provide novel tools to engineer quantum-enhanced heat engines. The lack of information on the reservoir inherently limits the practical insight that can be gained on the exchange process of open quantum systems. Here, we investigate the energy transfer for an open quantum system in the framework of quantum fluctuation relations. As a novel toolbox, we employ a nitrogen-vacancy center spin qubit in diamond, subject to repeated quantum projective measurements and a tunable dissipation channel. In the presence of energy fluctuations originated by dissipation and quantum projective measurements, the experimental results, supplemented by numerical simulations, show the validity of the energy exchange fluctuation relation, where the energy scale factor encodes missing reservoir information in the system out-of-equilibrium steady state properties. This result is complemented by a theoretical argument showing that, also for an open three-level quantum system, the existence of an out-of-equilibrium steady state dictates a unique time-independent value of the energy scale factor for which the fluctuation relation is verified. Our findings pave the way to the investigation of energy exchange mechanisms in arbitrary open quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا