ﻻ يوجد ملخص باللغة العربية
We present a universal method to include residual un-modeled background shape uncertainties in likelihood based statistical tests for high energy physics and astroparticle physics. This approach provides a simple and natural protection against mismodeling, thus lowering the chances of a false discovery or of an over constrained confidence interval, and allows a natural transition to unbinned space. Unbinned likelihood allows optimal usage of information for the data and the models, and enhances the sensitivity. We show that the asymptotic behavior of the test statistic can be regained in cases where the model fails to describe the true background behavior, and present 1D and 2D case studies for model-driven and data-driven background models. The resulting penalty on sensitivities follows the actual discrepancy between the data and the models, and is asymptotically reduced to zero with increasing knowledge.
PyUnfold is a Python package for incorporating imperfections of the measurement process into a data analysis pipeline. In an ideal world, we would have access to the perfect detector: an apparatus that makes no error in measuring a desired quantity.
LISA is the upcoming space-based Gravitational Wave telescope. LISA Pathfinder, to be launched in the coming years, will prove and verify the detection principle of the fundamental Doppler link of LISA on a flight hardware identical in design to that
We propose a novel method for computing $p$-values based on nested sampling (NS) applied to the sampling space rather than the parameter space of the problem, in contrast to its usage in Bayesian computation. The computational cost of NS scales as $l
The current and upcoming generation of Very Large Volume Neutrino Telescopes---collecting unprecedented quantities of neutrino events---can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass or
We consider whether the asymptotic distributions for the log-likelihood ratio test statistic are expected to be Gaussian or chi-squared. Two straightforward examples provide insight on the difference.