ﻻ يوجد ملخص باللغة العربية
The graviton exchange effect on cosmological correlation functions is examined by employing the double-soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams in addition to those due to scalar-exchange and scalar-contact-interaction, is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. We compare these three terms, putting small values for the slow-roll parameters and $(1-n_{s}) = 0.042$, where $n_{s}$ is the scalar spectral index. It is argued that the graviton exchange effects are more dominant than the other two and could be observed in the trispectrum in the double-soft limit. Our observation strengthens the previous work by Seery, Sloth and Vernizzi, in which it has been argued that the graviton exchange dominates in the counter-collinear limit for single field slow-roll inflation.
It is now well understood that Ward identities associated to the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of d
Recently it was conjectured that a certain infinite-dimensional diagonal subgroup of BMS supertranslations acting on past and future null infinity (${mathscr I}^-$ and ${mathscr I}^+$) is an exact symmetry of the quantum gravity ${cal S}$-matrix, and
We show that the form of the recently proposed subleading soft graviton and gluon theorems in any dimension are severely constrained by elementary arguments based on Poincare and gauge invariance as well as a self-consistency condition arising from t
We study instanton corrections to four-point correlation correlation function of half-BPS operators in $mathcal N=4$ SYM in the light-cone limit when operators become null separated in a sequential manner. We exploit the relation between the correlat
We explore the possibility to make use of cosmological data to look for signatures of unknown heavy particles whose masses are on the order of the Hubble parameter during the time of inflation. To be more specific we take up the quasi-single field in