ﻻ يوجد ملخص باللغة العربية
We outline two concepts to explain Ultra High Energy Cosmic Rays (UHECRs), one based on radio galaxies and their relativistic jets and terminal hot spots, and one based on relativistic Super-Novae (SNe) or Gamma Ray Bursts (GRBs) in starburst galaxies, one matching the arrival direction data in the South (the radio galaxy Cen A) and one in the North (the starburst galaxy M82). Ubiquitous neutrino emission follows accompanied by compact TeV photon emission, detectable more easily if the direction is towards Earth. The ejection of UHECRs is last. We have observed particles up to ZeV, neutrinos up to PeV, photons up to TeV, 30 - 300 Hz GW events, and hope to detect soon of order Hz to mHz GW events. Energy turnover in single low frequency GW events may be of order 10^63 erg. How can we further test these concepts? First of all by associating individual UHECR events, or directional groups of events, with chemical composition in both the Telescope Array (TA) Coll. and the Auger Coll. data. Second by identifying more TeV to PeV neutrinos with recent SMBH mergers. Third by detecting the order < mHz GW events of SMBH binaries, and identifying the galaxies host to the stellar BH mergers and their GW events in the range up to 300 Hz. Fourth by finally detecting the formation of the first generation of SMBHs and their mergers, surely a spectacular discovery.
This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering
While there is some level of consensus on a Galactic origin of cosmic rays up to the knee ($E_{k}sim 3times 10^{15}$ eV) and on an extragalactic origin of cosmic rays with energy above $sim 10^{19}$ eV, the debate on the genesis of cosmic rays in the
We explore the possibility that the recently detected dipole anisotropy in the arrival directions of~$>8$~EeV ultra-high energy cosmic-rays (UHECRs) arises due to the large-scale structure (LSS). We assume that the cosmic ray sources follow the matte
The status of the Greisen-Zatsepin-Kuzmin (GZK) cutoff and pair-production dip in Ultra High Energy Cosmic Rays (UHECR) is discussed.They are the features in the spectrum of protons propagating through CMB radiation in extragalactic space, and discov
We present an update on CRDB (https://lpsc.in2p3.fr/crdb), the cosmic-ray database for charged species. CRDB is based on MySQL, queried and sorted by jquery and table-sorter libraries, and displayed via PHP web pages through the AJAX protocol. We rev