ﻻ يوجد ملخص باللغة العربية
The status of the Greisen-Zatsepin-Kuzmin (GZK) cutoff and pair-production dip in Ultra High Energy Cosmic Rays (UHECR) is discussed.They are the features in the spectrum of protons propagating through CMB radiation in extragalactic space, and discovery of these features implies that primary particles are mostly extragalactic protons. The spectra measured by AGASA, Yakutsk, HiRes and Auger detectors are in good agreement with the pair-production dip, and HiRes data have strong evidences for the GZK cutoff. The Auger spectrum,as presented at the 30th ICRC 2007, agrees with the GZK cutoff, too. The AGASA data agree well with the beginning of the GZK cutoff at E leq 80 EeV, but show the excess of events at higher energies, the origin of which is not understood. The difference in the absolute fluxes measured by different detectors disappears after energy shift within the systematic errors of each experiment.
We explore the possibility that the recently detected dipole anisotropy in the arrival directions of~$>8$~EeV ultra-high energy cosmic-rays (UHECRs) arises due to the large-scale structure (LSS). We assume that the cosmic ray sources follow the matte
We present an update on CRDB (https://lpsc.in2p3.fr/crdb), the cosmic-ray database for charged species. CRDB is based on MySQL, queried and sorted by jquery and table-sorter libraries, and displayed via PHP web pages through the AJAX protocol. We rev
Propagation of ultra-high energy photons in the solar magnetosphere gives rise to cascades comprising thousands of photons. We study the cascade development using Monte Carlo simulations and find that the photons in the cascades are spatially extende
We present a search for high-energy $gamma$-ray emission from 566 Active Galactic Nuclei at redshift $z > 0.2$, from the 2WHSP catalog of high-synchrotron peaked BL Lac objects with eight years of Fermi-LAT data. We focus on a redshift range where el
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi