ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmology with AGN dust time lags -- Simulating the new VEILS survey

67   0   0.0 ( 0 )
 نشر من قبل Sebastian H\\\"onig
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. F. Honig




اسأل ChatGPT حول البحث

The time lag between optical and near-infrared continuum emission in active galactic nuclei (AGN) shows a tight correlation with luminosity and has been proposed as a standardisable candle for cosmology. In this paper, we explore the use of these AGN hot-dust time lags for cosmological model fitting under the constraints of the new VISTA Extragalactic Infrared Legacy Survey VEILS. This new survey will target a 9 deg^2 field observed in J- and Ks-band with a 14-day cadence and will run for three years. The same area will be covered simultaneously in the optical griz bands by the Dark Energy Survey, providing complementary time-domain optical data. We perform realistic simulations of the survey setup, showing that we expect to recover dust time lags for about 450 objects out of a total of 1350 optical type 1 AGN, spanning a redshift range of 0.1 < z < 1.2. We use the lags recovered from our simulations to calculate precise distance moduli, establish a Hubble diagram, and fit cosmological models. Assuming realistic scatter in the distribution of the dust around the AGN as well as in the normalisation of the lag-luminosity relation, we are able to constrain {Omega}_{Lambda} in {Lambda}CDM with similar accuracy as current supernova samples. We discuss the benefits of combining AGN and supernovae for cosmology and connect the present work to future attempts to reach out to redshifts of z > 4.



قيم البحث

اقرأ أيضاً

137 - Frank Masci 2010
The Two Micron All-Sky Survey (2MASS) has provided a uniform photometric catalog to search for previously unknown red AGN and QSOs. We have extended the search to the southern equatorial sky by obtaining spectra for 1182 AGN candidates using the 6dF multifibre spectrograph on the UK Schmidt Telescope. These were scheduled as auxiliary targets for the 6dF Galaxy Redshift Survey. The candidates were selected using a single color cut of J - Ks > 2 to Ks ~ 15.5 and a galactic latitude of |b|>30 deg. 432 spectra were of sufficient quality to enable a reliable classification. 116 sources (or ~27%) were securely classified as type 1 AGN, 20 as probable type 1s, and 57 as probable type 2 AGN. Most of them span the redshift range 0.05<z<0.5 and only 8 (or ~6%) were previously identified as AGN or QSOs. Our selection leads to a significantly higher AGN identification rate amongst local galaxies (>20%) than in any previous galaxy survey. A small fraction of the type 1 AGN could have their optical colors reddened by optically thin dust with A_V<2 mag relative to optically selected QSOs. A handful show evidence for excess far-IR emission. The equivalent width (EW) and color distributions of the type 1 and 2 AGN are consistent with AGN unified models. In particular, the EW of the [OIII] emission line weakly correlates with optical--near-IR color in each class of AGN, suggesting anisotropic obscuration of the AGN continuum. Overall, the optical properties of the 2MASS red AGN are not dramatically different from those of optically-selected QSOs. Our near-IR selection appears to detect the most near-IR luminous QSOs in the local universe to z~0.6 and provides incentive to extend the search to deeper near-IR surveys.
Voyage 2050 White Paper highlighting the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe. Precision spectroscopy, p ossible with existing technology, would provide key tests for processes expected within the cosmological standard model and open an enormous discovery space to new physics. This offers unique scientific opportunities for furthering our understanding of inflation, recombination, reionization and structure formation as well as dark matter and particle physics. A dedicated experimental approach could open this new window to the early Universe in the decades to come, allowing us to turn the long-standing upper distortion limits obtained with COBE/FIRAS some 25 years ago into clear detections of the expected standard distortion signals.
Cosmic acceleration is the most surprising cosmological discovery in many decades. Testing and distinguishing among possible explanations requires cosmological measurements of extremely high precision probing the full history of cosmic expansion and structure growth and, ideally, compare and contrast matter and relativistic tracers of the gravity potential. This program is one of the defining objectives of the Wide-Field Infrared Survey Telescope (WFIRST), as set forth in the New Worlds, New Horizons report (NWNH) in 2010. The WFIRST mission has the ability to improve these measurements by 1-2 orders of magnitude compared to the current state of the art, while simultaneously extending their redshift grasp, greatly improving control of systematic effects, and taking a unified approach to multiple probes that provide complementary physical information and cross-checks of cosmological results. We describe in this annual report the activities of the Science Investigation Team (SIT) Cosmology with the High Latitude Survey (HLS) during the year 2017. This team was selected by NASA in December 2015 in order to address the stringent challenges of the WFIRST dark energy (DE) program through the Projects formulation phase. This SIT has elected to jointly address Galaxy Redshift Survey, Weak Lensing and Cluster Growth and thus fully embrace the fact that the imaging and spectroscopic elements of the HLS will be realized as an integrated observing program, and they jointly impose requirements on performance and operations. WFIRST is designed to be able to deliver a definitive result on the origin of cosmic acceleration. It is not optimized for Figure of Merit sensitivity but for control of systematic uncertainties and for having multiple techniques each with multiple cross-checks. Our SIT work focuses on understanding the potential systematics in the WFIRST DE measurements.
Observational cosmology in the next decade will rely on probes of the distribution of matter in the redshift range between $0<z<3$ to elucidate the nature of dark matter and dark energy. In this redshift range, galaxy formation is known to have a sig nificant impact on observables such as two-point correlations of galaxy shapes and positions, altering their amplitude and scale dependence beyond the expected statistical uncertainty of upcoming experiments at separations under 10 Mpc. Successful extraction of information in such a regime thus requires, at the very least, unbiased models for the impact of galaxy formation on the matter distribution, and can benefit from complementary observational priors. This work reviews the current state of the art in the modelling of baryons for cosmology, from numerical methods to approximate analytical prescriptions, and makes recommendations for studies in the next decade, including a discussion of potential probe combinations that can help constrain the role of baryons in cosmological studies. We focus, in particular, on the modelling of the matter power spectrum, $P(k,z)$, as a function of scale and redshift, and of the observables derived from this quantity. This work is the result of a workshop held at the University of Oxford in November of 2018.
232 - Xinyu Dai 2015
The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift XRT serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4e-15 erg/s/cm^2) and area survey filling the gap between deep, narrow Chandra/XMM-N ewton surveys and wide, shallow ROSAT surveys. Here we present a catalog of 22,563 point sources and 442 extended sources and examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. We use Wise mid-infrared (MIR) colors to classify the sources. For AGN we can roughly separate the point sources into MIR-red and MIR-blue AGN, finding roughly equal numbers of each type in the soft X-ray band (0.5-2 keV), but fewer MIR-blue sources in the hard X-ray band (2-8 keV). The cluster number counts, with 5% uncertainties from cosmic variance, are also consistent with previous surveys but span a much larger continuous flux range. Deep optical or IR follow-up observations of this cluster sample will significantly increase the number of higher redshift (z > 0.5) X-ray-selected clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا