ﻻ يوجد ملخص باللغة العربية
Observational cosmology in the next decade will rely on probes of the distribution of matter in the redshift range between $0<z<3$ to elucidate the nature of dark matter and dark energy. In this redshift range, galaxy formation is known to have a significant impact on observables such as two-point correlations of galaxy shapes and positions, altering their amplitude and scale dependence beyond the expected statistical uncertainty of upcoming experiments at separations under 10 Mpc. Successful extraction of information in such a regime thus requires, at the very least, unbiased models for the impact of galaxy formation on the matter distribution, and can benefit from complementary observational priors. This work reviews the current state of the art in the modelling of baryons for cosmology, from numerical methods to approximate analytical prescriptions, and makes recommendations for studies in the next decade, including a discussion of potential probe combinations that can help constrain the role of baryons in cosmological studies. We focus, in particular, on the modelling of the matter power spectrum, $P(k,z)$, as a function of scale and redshift, and of the observables derived from this quantity. This work is the result of a workshop held at the University of Oxford in November of 2018.
We present and test a framework that models the three-dimensional distribution of mass in the Universe as a function of cosmological and astrophysical parameters. Our approach combines two different techniques: a rescaling algorithm that modifies the
While baryonic feedback is one of the most important astrophysical systematics that we need to address in order to achieve precision cosmology, few weak lensing studies have directly measured its impact on the matter power spectrum. We report measure
We present an updated version of the HMcode augmented halo model that can be used to make accurate predictions of the non-linear matter power spectrum over a wide range of cosmologies. Major improvements include modelling of BAO damping in the power
Accurate knowledge of the effect of feedback from galaxy formation on the matter distribution is a key requirement for future weak lensing experiments. Recent studies using hydrodynamic simulations have shown that different baryonic feedback scenario
We describe the Dark Energy Survey (DES) photometric data set assembled from the first three years of science operations to support DES Year 3 cosmology analyses, and provide usage notes aimed at the broad astrophysics community. Y3 Gold improves on