ﻻ يوجد ملخص باللغة العربية
We investigate the mechanical behavior of particle-stabilized droplets using micropipette aspiration. We observe that droplets stabilized with amphiphilic dumbbell-shaped particles exhibit a two-stage response to increasing suction pressure. Droplets first drip, then wrinkle and buckle like an elastic shell. While particles have a dramatic impact on the mechanism of failure, the mechanical strength of the droplets is only modestly increased. On the other hand, droplets coated with the molecular surfactant Sodium Dodecyl Sulfate are even weaker than bare droplets. In all cases, the magnitude of the critical pressure for the onset of instabilities is set by the fluid surface tension.
The study of cells dynamical properties is essential to a better understanding of several physiological processes. These properties are directly associated with cells mechanical parameters experimentally achieved through physical stress. The micropip
Pathogens contained in airborne respiratory droplets have been seen to remain infectious for periods of time that depend on the ambient temperature and humidity. In particular, regarding the humidity, the empirically least favorable conditions for th
When cooled down, emulsion droplets stabilized by a frozen interface of alkane molecules and surfactants have been observed to undergo a spectacular sequence of morphological transformations: from spheres to faceted icosahedra, down to flattened liqu
Architectural transformations play a key role in the evolution of complex systems, from design algorithms for metamaterials to flow and plasticity of disordered media. Here, we develop a general framework for the evolution of the linear mechanical re
Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that energetic rigidity, in which all non-trivial deformations raise the energy of a