ﻻ يوجد ملخص باللغة العربية
Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that energetic rigidity, in which all non-trivial deformations raise the energy of a structure, is a more useful notion of rigidity in practice than two more commonly used rigidity tests: Maxwell-Calladine constraint counting (first-order rigidity) and second-order rigidity. We find that constraint counting robustly predicts energetic rigidity only when the system has no states of self stress. When the system has states of self stress, we show that second-order rigidity can imply energetic rigidity in systems that are not considered rigid based on constraint counting, and is even more reliable than shear modulus. We also show that there may be systems for which neither first nor second-order rigidity imply energetic rigidity. The formalism of energetic rigidity unifies our understanding of mechanical stability and also suggests new avenues for material design.
This is the second paper devoted to energetic rigidity, in which we apply our formalism to examples in two dimensions: underconstrained random regular spring networks, vertex models, and jammed packings of soft particles. Spring networks and vertex m
The evolution of porous structure and mechanical properties of binary glasses under tensile loading were examined using molecular dynamics simulations. We consider vitreous systems obtained in the process of phase separation after a rapid isochoric q
Mechanical metamaterials actuators achieve pre-determined input--output operations exploiting architectural features encoded within a single 3D printed element, thus removing the need of assembling different structural components. Despite the rapid p
Motivated by the formal argument that a non-zero shear modulus is the result of averaging over a constrained configurations space, we demonstrate that the shear modulus calculated over a range of temperatures and averaging times can be expressed (rel
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization (ECNLE theory) of activated dynamics in bulk spherical particle liquids to address the influence of random particle pin