ترغب بنشر مسار تعليمي؟ اضغط هنا

$p$-adic Distance, Finite Precision and Emergent Superdeterminism: A Number-Theoretic Consistent-Histories Approach to Local Quantum Realism

63   0   0.0 ( 0 )
 نشر من قبل Tim Palmer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T.N.Palmer




اسأل ChatGPT حول البحث

Although the notion of superdeterminism can, in principle, account for the violation of the Bell inequalities, this potential explanation has been roundly rejected by the quantum foundations community. The arguments for rejection, one of the most substantive coming from Bell himself, are critically reviewed. In particular, analysis of Bells argument reveals an implicit unwarranted assumption: that the Euclidean metric is the appropriate yardstick for measuring distances in state space. Bells argument is largely negated if this yardstick is instead based on the alternative $p$-adic metric. Such a metric, common in number theory, arises naturally when describing chaotic systems which evolve precisely on self-similar invariant sets in their state space. A locally-causal realistic model of quantum entanglement is developed, based on the premise that the laws of physics ultimately derive from an invariant-set geometry in the state space of a deterministic quasi-cyclic mono-universe. Based on this, the notion of a complex Hilbert vector is reinterpreted in terms of an uncertain selection from a finite sample space of states, leading to a novel form of `consistent histories based on number-theoretic properties of the transcendental cosine function. This leads to novel realistic interpretations of position/momentum non-commutativity, EPR, the Bell Theorem and the Tsirelson bound. In this inherently holistic theory - neither conspiratorial, retrocausal, fine tuned nor nonlocal - superdeterminism is not invoked by fiat but is emergent from these `consistent histories number-theoretic constraints. Invariant set theory provides new perspectives on many of the contemporary problems at the interface of quantum and gravitational physics, and, if correct, may signal the end of particle physics beyond the Standard Model.



قيم البحث

اقرأ أيضاً

134 - Shuyang Ye 2020
Let $G$ be a connected reductive group over a $p$-adic local field $F$. We propose and study the notions of $G$-$varphi$-modules and $G$-$(varphi, abla)$-modules over the Robba ring, which are exact faithful $F$-linear tensor functors from the catego ry of $G$-representations on finite-dimensional $F$-vector spaces to the categories of $varphi$-modules and $(varphi, abla)$-modules over the Robba ring, respectively, commuting with the respective fiber functors. We study Kedlayas slope filtration theorem in this context, and show that $G$-$(varphi, abla)$-modules over the Robba ring are $G$-quasi-unipotent, which is a generalization of the $p$-adic local monodromy theorem proven independently by Y. Andre, K. S. Kedlaya, and Z. Mebkhout.
An example shows that weak decoherence is more restrictive than the minimal logical decoherence structure that allows probabilities to be used consistently for quantum histories. The probabilities in the sum rules that define minimal decoherence are all calculated by using a projection operator to describe each possibility for the state at each time. Weak decoherence requires more sum rules. They bring in additional variables, that require different measurements and a different way to calculate probabilities, and raise questions of operational meaning. The example shows that extending the linearly positive probability formula from weak to minimal decoherence gives probabilities that are different from those calculated in the usual way using the Born and von Neumann rules and a projection operator at each time.
126 - Robert B. Griffiths 2011
The relationship between quantum logic, standard propositional logic, and the (consistent) histories rules for quantum reasoning is discussed. It is shown that Maudlins claim [Am. J. Phys. 79 (2011) 954] that the histories approach is inconsistent, i s incorrect. The histories approach is both internally consistent and adequate for discussing the physical situations considered by Maudlin.
We develop an information theoretic interpretation of the number-phase complementarity in atomic systems, where phase is treated as a continuous positive operator valued measure (POVM). The relevant uncertainty principle is obtained as an upper bound on a sum of knowledge of these two observables for the case of two-level systems. A tighter bound characterizing the uncertainty relation is obtained numerically in terms of a weighted knowledge sum involving these variables. We point out that complementarity in these systems departs from mutual unbiasededness in two signalificant ways: first, the maximum knowledge of a POVM variable is less than log(dimension) bits; second, surprisingly, for higher dimensional systems, the unbiasedness may not be mutual but unidirectional in that phase remains unbiased with respect to number states, but not vice versa. Finally, we study the effect of non-dissipative and dissipative noise on these complementary variables for a single-qubit system.
83 - M. A. Nielsen 1997
Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive infor mation-theoretic conditions and equivalent algebraic conditions that are necessary and sufficient for a general quantum operation to be reversible. We analyze the thermodynamic cost of error correction and show that error correction can be regarded as a kind of ``Maxwell demon, for which there is an entropy cost associated with information obtained from measurements performed during error correction. A prescription for thermodynamically efficient error correction is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا