ﻻ يوجد ملخص باللغة العربية
Although the notion of superdeterminism can, in principle, account for the violation of the Bell inequalities, this potential explanation has been roundly rejected by the quantum foundations community. The arguments for rejection, one of the most substantive coming from Bell himself, are critically reviewed. In particular, analysis of Bells argument reveals an implicit unwarranted assumption: that the Euclidean metric is the appropriate yardstick for measuring distances in state space. Bells argument is largely negated if this yardstick is instead based on the alternative $p$-adic metric. Such a metric, common in number theory, arises naturally when describing chaotic systems which evolve precisely on self-similar invariant sets in their state space. A locally-causal realistic model of quantum entanglement is developed, based on the premise that the laws of physics ultimately derive from an invariant-set geometry in the state space of a deterministic quasi-cyclic mono-universe. Based on this, the notion of a complex Hilbert vector is reinterpreted in terms of an uncertain selection from a finite sample space of states, leading to a novel form of `consistent histories based on number-theoretic properties of the transcendental cosine function. This leads to novel realistic interpretations of position/momentum non-commutativity, EPR, the Bell Theorem and the Tsirelson bound. In this inherently holistic theory - neither conspiratorial, retrocausal, fine tuned nor nonlocal - superdeterminism is not invoked by fiat but is emergent from these `consistent histories number-theoretic constraints. Invariant set theory provides new perspectives on many of the contemporary problems at the interface of quantum and gravitational physics, and, if correct, may signal the end of particle physics beyond the Standard Model.
Let $G$ be a connected reductive group over a $p$-adic local field $F$. We propose and study the notions of $G$-$varphi$-modules and $G$-$(varphi, abla)$-modules over the Robba ring, which are exact faithful $F$-linear tensor functors from the catego
An example shows that weak decoherence is more restrictive than the minimal logical decoherence structure that allows probabilities to be used consistently for quantum histories. The probabilities in the sum rules that define minimal decoherence are
The relationship between quantum logic, standard propositional logic, and the (consistent) histories rules for quantum reasoning is discussed. It is shown that Maudlins claim [Am. J. Phys. 79 (2011) 954] that the histories approach is inconsistent, i
We develop an information theoretic interpretation of the number-phase complementarity in atomic systems, where phase is treated as a continuous positive operator valued measure (POVM). The relevant uncertainty principle is obtained as an upper bound
Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive infor