ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven nonlinear expectations for statistical uncertainty in decisions

48   0   0.0 ( 0 )
 نشر من قبل Samuel Cohen
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Samuel N. Cohen




اسأل ChatGPT حول البحث

In stochastic decision problems, one often wants to estimate the underlying probability measure statistically, and then to use this estimate as a basis for decisions. We shall consider how the uncertainty in this estimation can be explicitly and consistently incorporated in the valuation of decisions, using the theory of nonlinear expectations.



قيم البحث

اقرأ أيضاً

44 - Samuel N. Cohen 2017
Estimation of tail quantities, such as expected shortfall or Value at Risk, is a difficult problem. We show how the theory of nonlinear expectations, in particular the Data-robust expectation introduced in [5], can assist in the quantification of sta tistical uncertainty for these problems. However, when we are in a heavy-tailed context (in particular when our data are described by a Pareto distribution, as is common in much of extreme value theory), the theory of [5] is insufficient, and requires an additional regularization step which we introduce. By asking whether this regularization is possible, we obtain a qualitative requirement for reliable estimation of tail quantities and risk measures, in a Pareto setting.
This paper gives a review of concentration inequalities which are widely employed in non-asymptotical analyses of mathematical statistics in a wide range of settings, from distribution-free to distribution-dependent, from sub-Gaussian to sub-exponent ial, sub-Gamma, and sub-Weibull random variables, and from the mean to the maximum concentration. This review provides results in these settings with some fresh new results. Given the increasing popularity of high-dimensional data and inference, results in the context of high-dimensional linear and Poisson regressions are also provided. We aim to illustrate the concentration inequalities with known constants and to improve existing bounds with sharper constants.
Freidlin-Wentzell theory of large deviations can be used to compute the likelihood of extreme or rare events in stochastic dynamical systems via the solution of an optimization problem. The approach gives exponential estimates that often need to be r efined via calculation of a prefactor. Here it is shown how to perform these computations in practice. Specifically, sharp asymptotic estimates are derived for expectations, probabilities, and mean first passage times in a form that is geared towards numerical purposes: they require solving well-posed matrix Riccati equations involving the minimizer of the Freidlin-Wentzell action as input, either forward or backward in time with appropriate initial or final conditions tailored to the estimate at hand. The usefulness of our approach is illustrated on several examples. In particular, invariant measure probabilities and mean first passage times are calculated in models involving stochastic partial differential equations of reaction-advection-diffusion type.
A new approach in stochastic optimization via the use of stochastic gradient Langevin dynamics (SGLD) algorithms, which is a variant of stochastic gradient decent (SGD) methods, allows us to efficiently approximate global minimizers of possibly compl icated, high-dimensional landscapes. With this in mind, we extend here the non-asymptotic analysis of SGLD to the case of discontinuous stochastic gradients. We are thus able to provide theoretical guarantees for the algorithms convergence in (standard) Wasserstein distances for both convex and non-convex objective functions. We also provide explicit upper estimates of the expected excess risk associated with the approximation of global minimizers of these objective functions. All these findings allow us to devise and present a fully data-driven approach for the optimal allocation of weights for the minimization of CVaR of portfolio of assets with complete theoretical guarantees for its performance. Numerical results illustrate our main findings.
229 - Song Xi Chen , Liuhua Peng 2018
This paper considers distributed statistical inference for general symmetric statistics %that encompasses the U-statistics and the M-estimators in the context of massive data where the data can be stored at multiple platforms in different locations. In order to facilitate effective computation and to avoid expensive communication among different platforms, we formulate distributed statistics which can be conducted over smaller data blocks. The statistical properties of the distributed statistics are investigated in terms of the mean square error of estimation and asymptotic distributions with respect to the number of data blocks. In addition, we propose two distributed bootstrap algorithms which are computationally effective and are able to capture the underlying distribution of the distributed statistics. Numerical simulation and real data applications of the proposed approaches are provided to demonstrate the empirical performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا