ترغب بنشر مسار تعليمي؟ اضغط هنا

Concentration Inequalities for Statistical Inference

142   0   0.0 ( 0 )
 نشر من قبل Huiming Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper gives a review of concentration inequalities which are widely employed in non-asymptotical analyses of mathematical statistics in a wide range of settings, from distribution-free to distribution-dependent, from sub-Gaussian to sub-exponential, sub-Gamma, and sub-Weibull random variables, and from the mean to the maximum concentration. This review provides results in these settings with some fresh new results. Given the increasing popularity of high-dimensional data and inference, results in the context of high-dimensional linear and Poisson regressions are also provided. We aim to illustrate the concentration inequalities with known constants and to improve existing bounds with sharper constants.



قيم البحث

اقرأ أيضاً

225 - Xinjia Chen 2014
We explore the applications of our previously established likelihood-ratio method for deriving concentration inequalities for a wide variety of univariate and multivariate distributions. New concentration inequalities for various distributions are de veloped without the idea of minimizing moment generating functions.
68 - Kaizheng Wang 2019
This paper presents compact notations for concentration inequalities and convenient results to streamline probabilistic analysis. The new expressions describe the typical sizes and tails of random variables, allowing for simple operations without hea vy use of inessential constants. They bridge classical asymptotic notations and modern non-asymptotic tail bounds together. Examples of different kinds demonstrate their efficacy.
In this work we introduce the concept of Bures-Wasserstein barycenter $Q_*$, that is essentially a Frechet mean of some distribution $mathbb{P}$ supported on a subspace of positive semi-definite Hermitian operators $mathbb{H}_{+}(d)$. We allow a bary center to be restricted to some affine subspace of $mathbb{H}_{+}(d)$ and provide conditions ensuring its existence and uniqueness. We also investigate convergence and concentration properties of an empirical counterpart of $Q_*$ in both Frobenius norm and Bures-Wasserstein distance, and explain, how obtained results are connected to optimal transportation theory and can be applied to statistical inference in quantum mechanics.
229 - Song Xi Chen , Liuhua Peng 2018
This paper considers distributed statistical inference for general symmetric statistics %that encompasses the U-statistics and the M-estimators in the context of massive data where the data can be stored at multiple platforms in different locations. In order to facilitate effective computation and to avoid expensive communication among different platforms, we formulate distributed statistics which can be conducted over smaller data blocks. The statistical properties of the distributed statistics are investigated in terms of the mean square error of estimation and asymptotic distributions with respect to the number of data blocks. In addition, we propose two distributed bootstrap algorithms which are computationally effective and are able to capture the underlying distribution of the distributed statistics. Numerical simulation and real data applications of the proposed approaches are provided to demonstrate the empirical performance.
338 - Xinjia Chen 2013
We derive simple concentration inequalities for bounded random vectors, which generalize Hoeffdings inequalities for bounded scalar random variables. As applications, we apply the general results to multinomial and Dirichlet distributions to obtain multivariate concentration inequalities.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا