ﻻ يوجد ملخص باللغة العربية
We consider the problem of reproducing the correlations obtained by arbitrary local projective measurements on the two-qubit Werner state $rho = v |psi_- > <psi_- | + (1- v ) frac{1}{4}$ via a local hidden variable (LHV) model, where $|psi_- >$ denotes the singlet state. We show analytically that these correlations are local for $ v = 999times689times{10^{-6}}$ $cos^4(pi/50) simeq 0.6829$. In turn, as this problem is closely related to a purely mathematical one formulated by Grothendieck, our result implies a new bound on the Grothendieck constant $K_G(3) leq 1/v simeq 1.4644$. We also present a LHV model for reproducing the statistics of arbitrary POVMs on the Werner state for $v simeq 0.4553$. The techniques we develop can be adapted to construct LHV models for other entangled states, as well as bounding other Grothendieck constants.
Constructing local hidden variable (LHV) models for entangled quantum states is challenging, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to
Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality, and a central question is to determine the precis
The correlations of certain entangled quantum states can be fully reproduced via a local model. We discuss in detail the practical implementation of an algorithm for constructing local models for entangled states, recently introduced by Hirsch et al.
The verification of quantum entanglement under the influence of realistic noise and decoherence is crucial for the development of quantum technologies. Unfortunately, a full entanglement characterization is generally not possible with most entangleme
Let $D subset mathbb{R}^d$ be a bounded, connected domain with smooth boundary and let $-Delta u = mu_1 u$ be the first nontrivial eigenfunction of the Laplace operator with Neumann boundary conditions. We prove $$ |u|_{L^{infty}(D)} leq 60 cdot |u|_