ﻻ يوجد ملخص باللغة العربية
We analyze the decomposition problem of multivariate polynomial-exponential functions from truncated series and present new algorithms to compute their decomposition. Using the duality between polynomials and formal power series, we first show how the elements in the dual of an Artinian algebra correspond to polynomial-exponential functions. They are also the solutions of systems of partial differential equations with constant coefficients. We relate their representation to the inverse system of the roots of the characteristic variety. Using the properties of Hankel operators, we establish a correspondence between polynomial exponential series and Artinian Gorenstein algebras. We generalize Kronecker theorem to the multivariate case, by showing that the symbol of a Hankel operator of finite rank is a polynomial-exponential series and by connecting the rank of the Hankel operator with the decomposition of the symbol. A generalization of Pronys approach to multivariate decomposition problems is presented , exploiting eigenvector methods for solving polynomial equations. We show how to compute the frequencies and weights of a minimal polynomial-exponential decomposition , using the first coefficients of the series. A key ingredient of the approach is the flat extension criteria, which leads to a multivariate generalization of a rank condition for a Carath{e}odory-Fej{e}r decomposition of multivariate Hankel matrices. A new algorithm is given to compute a basis of the Artinian Gorenstein algebra, based on a Gram-Schmidt orthogonalization process and to decompose polynomial-exponential series. A general framework for the applications of this approach is described and illustrated in different problems. We provide Kronecker-type theorems for convolution operators, showing that a convolution operator (or a cross-correlation operator) is of finite rank, if and only if, its symbol is a polynomial-exponential function, and we relate its rank to the decomposition of its symbol. We also present Kronecker-type theorems for the reconstruction of measures as weighted sums of Dirac measures from moments and for the decomposition of polynomial-exponential functions from values. Finally, we describe an application of this method for the sparse interpolation of polylog functions from values.
In data processing and machine learning, an important challenge is to recover and exploit models that can represent accurately the data. We consider the problem of recovering Gaussian mixture models from datasets. We investigate symmetric tensor deco
Exponential varieties arise from exponential families in statistics. These real algebraic varieties have strong positivity and convexity properties, familiar from toric varieties and their moment maps. Among them are varieties of inverses of symmetri
We study averages over squarefree moduli of the size of exponential sums with polynomial phases. We prove upper bounds on various moments of such sums, and obtain evidence of un-correlation of exponential sums associated to different suitably unrelat
Assuming Schanuels conjecture, we prove that any polynomial exponential equation in one variable must have a solution that is transcendental over a given finitely generated field. With the help of some recent results in Diophantine geometry, we obtai
For classical dynamical systems, the polynomial entropy serves as a refined invariant of the topological entropy. In the setting of categorical dynamical systems, that is, triangulated categories endowed with an endofunctor, we develop the theory of