ﻻ يوجد ملخص باللغة العربية
SF$_{6}$ is an inert and electronegative gas that has a long history of use in high voltage insulation and numerous other industrial applications. Although SF$_{6}$ is used as a trace component to introduce stability in tracking chambers, its highly electronegative properties have limited its use in tracking detectors. In this work we present a series of measurements with SF$_{6}$ as the primary gas in a low pressure Time Projection Chamber (TPC), with a thick GEM used as the avalanche and readout device. The first results of an $^{55}$Fe energy spectrum in SF$_{6}$ are presented. Measurements of the mobility and longitudinal diffusion confirm the negative ion drift of SF$_{6}$. However, the observed waveforms have a peculiar but interesting structure that indicates multiple drift species and a dependence on the reduced field ($E/p$), as well as on the level of water vapor contamination. The discovery of a distinct secondary peak in the waveform, together with its identification and use for fiducializing events in the TPC, are also presented. Our measurements demonstrate that SF$_{6}$ is an ideal gas for directional dark matter detection. In particular, the high fluorine content is desirable for spin-dependent sensitivity, negative ion drift ensures low diffusion over large drift distances, and the multiple species of charge carriers allow for full detector fiducialization.
The Time Projection method is an ideal candidate to track low energy release particles. Large volumes can be readout by means of a moderate number of channels providing a complete 3D reconstruction of the charged tracks within the sensitive volume. I
CYGNO is a project realising a cubic meter demonstrator to study the scalability of the performance of the optical approach for the readout of large-volume, GEM-equipped TPC. This is part of the CYGNUS proto-collaboration which aims at constructing a
A negative ion micro time projection chamber (NI$mu$TPC) was developed and its performance studied. An NI$mu$TPC is a novel technology that enables the measurement of absolute $z$ coordinates for self-triggering TPCs. This technology provides full-fi
Searches for WIMP dark matter will in the near future be sensitive to solar neutrinos. Directional detection offers a method to reject solar neutrinos and improve WIMP searches, but reaching that sensitivity with existing directional detectors poses
Low-pressure gas Time Projection Chambers being developed for directional dark matter searches offer a technology with strong particle identification capability combined with the potential to produce a definitive detection of Galactic Weakly Interact