ﻻ يوجد ملخص باللغة العربية
A negative ion micro time projection chamber (NI$mu$TPC) was developed and its performance studied. An NI$mu$TPC is a novel technology that enables the measurement of absolute $z$ coordinates for self-triggering TPCs. This technology provides full-fiducialization analysis, which is not possible with conventional gaseous TPCs, and is useful for directional dark matter searches in terms of background rejection and the improvement of the angular resolution. The developed NI$mu$TPC prototype had a detection volume of 12.8 $times$ 25.6 $times$ 144 mm$^{3}$. The absolute $z$ coordinate was determined with a location accuracy of 16 mm using minority carrieres of SF$_{5}^{-}$. Simultaneously, there was a successful reconstruction of the three-dimensional (3D) tracks with a spatial resolution of 130 $murm{m}$. This is the first demonstration of 3D tracking with the detection of absolute $z$ coordinates, and it is an important step in improving the sensitivity of directional dark matter searches.
The dark matter directional detection opens a new field in cosmology bringing the possibility to build a map of nuclear recoils that would be able to explore the galactic dark matter halo giving access to a particle characterization of such matter an
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from neutrons, the ultimate background for dark matter direct detection. This strategy requires both a precise measurement of the energy d
The CYGNO project has the goal to use a gaseous TPC with optical readout to detect dark matter and solar neutrinos with low energy threshold and directionality. The CYGNO demonstrator will consist of 1 m 3 volume filled with He:CF 4 gas mixture at at
Negative-ion time projection chambers(TPCs) have been studied for low-rate and high-resolution applications such as dark matter search experiments. Recently, a full volume fiducialization in a self-triggering TPC was realized. This innovative technol
We have developed a micro-tpc using a pixelized bulk micromegas coupled to dedicated acquisition electronics as a read-out allowing to reconstruct the three dimensional track of a few keV recoils. The prototype has been tested with the Amande facilit