ترغب بنشر مسار تعليمي؟ اضغط هنا

Narrow depression in the density of states at the Dirac point in disordered graphene

203   0   0.0 ( 0 )
 نشر من قبل Ludwig Schweitzer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Schweitzer




اسأل ChatGPT حول البحث

The electronic properties of non-interacting particles moving on a two-dimensional bricklayer lattice are investigated numerically. In particular, the influence of disorder in form of a spatially varying random magnetic flux is studied. In addition, a strong perpendicular constant magnetic field $B$ is considered. The density of states $rho(E)$ goes to zero for $Eto 0$ as in the ordered system, but with a much steeper slope. This happens for both cases: at the Dirac point for B=0 and at the center of the central Landau band for finite $B$. Close to the Dirac point, the dependence of $rho(E)$ on the system size, on the disorder strength, and on the constant magnetic flux density is analyzed and fitted to an analytical expression proposed previously in connection with the thermal quantum Hall effect. Additional short-range on-site disorder completely replenishes the indentation in the density of states at the Dirac point.



قيم البحث

اقرأ أيضاً

We study the dynamics of Dirac and Weyl electrons in disordered point-node semimetals. The ballistic feature of the transport is demonstrated by simulating the wave-packet dynamics on lattice models. We show that the ballistic transport survives unde r a considerable strength of disorder up to the semimetal-metal transition point, which indicates the robustness of point-node semimetals against disorder. We also visualize the robustness of the nodal points and linear dispersion under broken translational symmetry. The speed of the wave packets slows down with increasing disorder strength, and vanishes toward the critical strength of disorder, hence becoming the order parameter. The obtained critical behavior of the speed of the wave packets is consistent with that predicted by the scaling conjecture.
We study the properties of the avoided or hidden quantum critical point (AQCP) in three dimensional Dirac and Weyl semi-metals in the presence of short range potential disorder. By computing the averaged density of states (along with its second and f ourth derivative at zero energy) with the kernel polynomial method (KPM) we systematically tune the effective length scale that eventually rounds out the transition and leads to an AQCP. We show how to determine the strength of the avoidance, establishing that it is not controlled by the long wavelength component of the disorder. Instead, the amount of avoidance can be adjusted via the tails of the probability distribution of the local random potentials. A binary distribution with no tails produces much less avoidance than a Gaussian distribution. We introduce a double Gaussian distribution to interpolate between these two limits. As a result we are able to make the length scale of the avoidance sufficiently large so that we can accurately study the properties of the underlying transition (that is eventually rounded out), unambiguously identify its location, and provide accurate estimates of the critical exponents $ u=1.01pm0.06$ and $z=1.50pm0.04$. We also show that the KPM expansion order introduces an effective length scale that can also round out the transition in the scaling regime near the AQCP.
We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency correlation function of LDOS accessed by a near-field hyperspectral imaging technique. We show, in particular, that short- and long-range frequency correlations of LDOS are controlled by different physical processes (multiple or single scattering processes, respectively) that can be---to some extent---manipulated independently. We also demonstrate that the single scattering contribution to LDOS fluctuations is sensitive to subwavelength features of the material and, in particular, to the correlation length of its dielectric function. Our work paves a way towards a complete control of statistical properties of disordered photonic systems, allowing for designing materials with predefined correlations of LDOS.
We study two lattice models, the honeycomb lattice (HCL) and a special square lattice (SQL), both reducing to the Dirac equation in the continuum limit. In the presence of disorder (gaussian potential disorder and random vector potential), we investi gate the behaviour of the density of states (DOS) numerically and analytically. While an upper bound can be derived for the DOS on the SQL at the Dirac point, which is also confirmed by numerical calculations, no such upper limit exists for the HCL in the presence of random vector potential. A careful investigation of the lowest eigenvalues indeed indicate, that the DOS can possibly be divergent at the Dirac point on the HCL. In spite of sharing a common continuum limit, these lattice models exhibit different behaviour.
128 - Kun W. Kim , T. Pereg-Barnea , 2013
The goal of this paper is to provide an intuitive and useful tool for analyzing the impurity bound state problem. We develop a semiclassical approach and apply it to an impurity in two dimensional systems with parabolic or Dirac like bands. Our metho d consists of reducing a higher dimensional problem into a sum of one dimensional ones using the two dimensional Green functions as a guide. We then analyze the one dimensional effective systems in the spirit of the wave function matching method as in the standard 1d quantum model. We demonstrate our method on two dimensional models with parabolic and Dirac-like dispersion, with the later specifically relevant to topological insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا