ﻻ يوجد ملخص باللغة العربية
Let $G$ be a graph with adjacency matrix $A(G)$ and let $D(G)$ be the diagonal matrix of the degrees of $G$. For every real $alphainleft[ 0,1right],$ define the matrix $A_{alpha}left(Gright) $ as [ A_{alpha}left(Gright) =alpha Dleft(Gright) +(1-alpha)Aleft(Gright) ] where $0leqalphaleq1$. This paper gives several results about the $A_{alpha}$-matrices of trees. In particular, it is shown that if $T_{Delta}$ is a tree of maximal degree $Delta,$ then the spectral radius of $A_{alpha}(T_{Delta})$ satisfies the tight inequality [ rho(A_{alpha}(T_{Delta}))<alphaDelta+2(1-alpha)sqrt{Delta-1}. ] This bound extends previous bounds of Godsil, Lovasz, and Stevanovic. The proof is based on some new results about the $A_{alpha}$-matrices of Bethe trees and generalized Bethe trees. In addition, several bounds on the spectral radius of $A_{alpha}$ of general graphs are proved, implying tight bounds for paths and Bethe trees.
Let $G$ be a graph with $n$ vertices, and let $A(G)$ and $D(G)$ denote respectively the adjacency matrix and the degree matrix of $G$. Define $$ A_{alpha}(G)=alpha D(G)+(1-alpha)A(G) $$ for any real $alphain [0,1]$. The $A_{alpha}$-characteristic pol
In this paper, we use a new and correct method to determine the $n$-vertex $k$-trees with the first three largest signless Laplacian indices.
Let $T_{n}$ be the set of rooted labeled trees on $set{0,...,n}$. A maximal decreasing subtree of a rooted labeled tree is defined by the maximal subtree from the root with all edges being decreasing. In this paper, we study a new refinement $T_{n,k}
A subtree of a tree is any induced subgraph that is again a tree (i.e., connected). The mean subtree order of a tree is the average number of vertices of its subtrees. This invariant was first analyzed in the 1980s by Jamison. An intriguing open ques
We prove that for any tree with a vertex of degree at least six, its chromatic symmetric function is not $e$-positive, that is, it cannot be written as a nonnegative linear combination of elementary symmetric functions. This makes significant progres