ﻻ يوجد ملخص باللغة العربية
A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is $x$- and $y$-monotone. Angle-monotone graphs are $sqrt 2$-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-$theta_6$-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex $s$ to any vertex $t$ whose length is within $1 + sqrt 2$ times the Euclidean distance from $s$ to $t$. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.
Online routing in a planar embedded graph is central to a number of fields and has been studied extensively in the literature. For most planar graphs no $O(1)$-competitive online routing algorithm exists. A notable exception is the Delaunay triangula
In an $mathsf{L}$-embedding of a graph, each vertex is represented by an $mathsf{L}$-segment, and two segments intersect each other if and only if the corresponding vertices are adjacent in the graph. If the corner of each $mathsf{L}$-segment in an $
A emph{Stick graph} is an intersection graph of axis-aligned segments such that the left end-points of the horizontal segments and the bottom end-points of the vertical segments lie on a `ground line, a line with slope $-1$. It is an open question to
We study online routing algorithms on the $Theta$6-graph and the half-$Theta$6-graph (which is equivalent to a variant of the Delaunay triangulation). Given a source vertex s and a target vertex t in the $Theta$6-graph (resp. half-$Theta$6-graph), th
An $S$-hypersimplex for $S subseteq {0,1, dots,d}$ is the convex hull of all $0/1$-vectors of length $d$ with coordinate sum in $S$. These polytopes generalize the classical hypersimplices as well as cubes, crosspolytopes, and halfcubes. In this pape