ﻻ يوجد ملخص باللغة العربية
Diamond displays a large variety of luminescence centers which define its optical properties and can be either created or modified by irradiation. The main purpose of the present work is to study the radiation hardness of several of such centers in homoepitaxial single crystal CVD diamond by following the evolution of photoluminescence and ionoluminescence upon 2 MeV proton irradiation. Luminescence decays were observed with values of the fluence at half of the starting luminescence (F1/2) of the order of 1014 cm-2. The 3H center displayed a non monotonic behavior, with a growing behavior and a subsequent decay with a rather high F1/2 value (in the order of few 1016 cm-2), maintaining at the highest fluences an intensity significantly higher than the blue A-band. A simple model based on a double-exponential trend was defined to fit with satisfactory accuracy the evolution of the 3H center. Several PL centers (namely: 3H, TR12, 491 nm, 494 nm) exhibited clear correlations and anti-correlations in their fluence dependences, which were considered in the attempt to acquire some insight into their possible alternative attributions.
Color centers in diamond are very promising candidates among the possible realizations for practical single-photon sources because of their long-time stable emission at room temperature. The popular nitrogen-vacancy center shows single-photon emissio
Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal f
Notwithstanding numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluori
We demonstrate the fabrication of sub-micron layers of single-crystal diamond suitable for subsequent processing as demonstrated by this test ring structure. This method is a significant enabling technology for nanomechanical and photonic structures
Nitrogen-vacancy (NV-) color centers in diamond were created by implantation of 7 keV 15N (I = 1/2) ions into type IIa diamond. Optically detected magnetic resonance was employed to measure the hyperfine coupling of the NV- centers. The hyperfine spe