ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-photon emission from Ni-related color centers in CVD diamond

220   0   0.0 ( 0 )
 نشر من قبل David Steinmetz
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Color centers in diamond are very promising candidates among the possible realizations for practical single-photon sources because of their long-time stable emission at room temperature. The popular nitrogen-vacancy center shows single-photon emission, but within a large, phonon-broadened spectrum (~100nm), which strongly limits its applicability for quantum communication. By contrast, Ni-related centers exhibit narrow emission lines at room temperature. We present investigations on single color centers consisting of Ni and Si created by ion implantation into single crystalline IIa diamond. We use systematic variations of ion doses between 10^8/cm^2 and 10^14/cm^2 and energies between 30keV and 1.8MeV. The Ni-related centers show emission in the near infrared spectral range (~770nm to 787nm) with a small line-width (~3nm FWHM). A measurement of the intensity correlation function proves single-photon emission. Saturation measurements yield a rather high saturation count rate of 77.9 kcounts/s. Polarization dependent measurements indicate the presence of two orthogonal dipoles.



قيم البحث

اقرأ أيضاً

We report on the systematic characterization of the optical properties of diamond color centers based on Pb impurities. An ensemble photoluminescence analysis of their spectral emission was performed at different excitation wavelengths in the 405-520 nm range and at different temperatures in the 4-300 K range. The series of observed spectral features consist of different emission lines associated with Pb-related defects. Finally, a room-temperature investigation of single-photon emitters under 490.5 nm laser excitation is reported, revealing different spectral signatures with respect to those already reported under 514 nm excitation. This work represents a substantial progress with respect to previous studies on Pb-related color centers, both in the attribution of an articulated series of spectral features and in the understanding of the formation process of this type of defect, thus clarifying the potential of this system for high-impact applications in quantum technologies.
Nitrogen vacancy (NV) centers in diamond have distinct promise as solid-state qubits. This is because of their large dipole moment, convenient level structure and very long room-temperature coherence times. In general, a combination of ion irradiatio n and subsequent annealing is used to create the centers, however for the rigorous demands of quantum computing all processes need to be optimized, and decoherence due to the residual damage caused by the implantation process itself must be mitigated. To that end we have studied photoluminescence (PL) from NV$^-$, NV$^0$ and GR1 centers formed by ion implantation of 2MeV He ions over a wide range of fluences. The sample was annealed at $600^{circ}$C to minimize residual vacancy diffusion, allowing for the concurrent analysis of PL from NV centers and irradiation induced vacancies (GR1). We find non-monotic PL intensities with increasing ion fluence, monotonic increasing PL in NV$^0$/NV$^-$ and GR1/(NV$^0$ + NV$^1$) ratios, and increasing inhomogeneous broadening of the zero-phonon lines with increasing ion fluence. All these results shed important light on the optimal formation conditions for NV qubits. We apply our findings to an off-resonant photonic quantum memory scheme using vibronic sidebands.
Single crystal diamond membranes that host optically active emitters are highly attractive components for integrated quantum nanophotonics. In this work we demonstrate bottom-up synthesis of single crystal diamond membranes containing the germanium v acancy (GeV) color centers. We employ a lift-off technique to generate the membranes and perform chemical vapour deposition in a presence of germanium oxide to realize the insitu doping. Finally, we show that these membranes are suitable for engineering of photonic resonators such as microring cavities with quality factors of 1500. The robust and scalable approach to engineer single crystal diamond membranes containing emerging color centers is a promising pathway for realization of diamond integrated quantum nanophotonic circuits on a chip.
Emerging quantum technologies require precise control over quantum systems of increasing complexity. Defects in diamond, particularly the negatively charged nitrogen-vacancy (NV) center, are a promising platform with the potential to enable technolog ies ranging from ultra-sensitive nanoscale quantum sensors, to quantum repeaters for long distance quantum networks, to simulators of complex dynamical processes in many-body quantum systems, to scalable quantum computers. While these advances are due in large part to the distinct material properties of diamond, the uniqueness of this material also presents difficulties, and there is a growing need for novel materials science techniques for characterization, growth, defect control, and fabrication dedicated to realizing quantum applications with diamond. In this review we identify and discuss the major materials science challenges and opportunities associated with diamond quantum technologies.
Diamond displays a large variety of luminescence centers which define its optical properties and can be either created or modified by irradiation. The main purpose of the present work is to study the radiation hardness of several of such centers in h omoepitaxial single crystal CVD diamond by following the evolution of photoluminescence and ionoluminescence upon 2 MeV proton irradiation. Luminescence decays were observed with values of the fluence at half of the starting luminescence (F1/2) of the order of 1014 cm-2. The 3H center displayed a non monotonic behavior, with a growing behavior and a subsequent decay with a rather high F1/2 value (in the order of few 1016 cm-2), maintaining at the highest fluences an intensity significantly higher than the blue A-band. A simple model based on a double-exponential trend was defined to fit with satisfactory accuracy the evolution of the 3H center. Several PL centers (namely: 3H, TR12, 491 nm, 494 nm) exhibited clear correlations and anti-correlations in their fluence dependences, which were considered in the attempt to acquire some insight into their possible alternative attributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا