ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Super Efimov Effect

62   0   0.0 ( 0 )
 نشر من قبل Zhenhua Yu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Super Efimov effect is a recently proposed three-body effect characterized by a double-exponential scaling, which has not been observed experimentally yet. Here, we present the general dynamic equations determining the cloud size of a scale invariant quantum gas in a time dependent harmonic trap. We show that a double-log periodicity as the hallmark of the super Efimov effect emerges when the trap frequency is decreased with a specially designed time-dependence. We also demonstrate that this dynamic super Efimov effect can be realized with realistic choices of parameters in current experiments.



قيم البحث

اقرأ أيضاً

The quantum mechanical three-body problem is a source of continuing interest due to its complexity and not least due to the presence of fascinating solvable cases. The prime example is the Efimov effect where infinitely many bound states of identical bosons can arise at the threshold where the two-body problem has zero binding energy. An important aspect of the Efimov effect is the effect of spatial dimensionality; it has been observed in three dimensional systems, yet it is believed to be impossible in two dimensions. Using modern experimental techniques, it is possible to engineer trap geometry and thus address the intricate nature of quantum few-body physics as function of dimensionality. Here we present a framework for studying the three-body problem as one (continuously) changes the dimensionality of the system all the way from three, through two, and down to a single dimension. This is done by considering the Efimov favorable case of a mass-imbalanced system and with an external confinement provided by a typical experimental case with a (deformed) harmonic trap.
We show that four heavy fermions interacting resonantly with a lighter atom (4+1 system) become Efimovian at mass ratio 13.279(2), which is smaller than the corresponding 2+1 and 3+1 thresholds. We thus predict the five-body Efimov effect for this sy stem in the regime where any of its subsystem is non- Efimovian. For smaller mass ratios we show the existence and calculate the energy of a universal 4+1 pentamer state, which continues the series of the 2+1 trimer predicted by Kartavtsev and Malykh and 3+1 tetramer discovered by Blume. We also show that the effective-range correction for the light-heavy interaction has a strong effect on all these states and larger effective ranges increase their tendency to bind.
The dimensionality of a system can fundamentally impact the behaviour of interacting quantum particles. Classic examples range from the fractional quantum Hall effect to high temperature superconductivity. As a general rule, one expects confinement t o favour the binding of particles. However, attractively interacting bosons apparently defy this expectation: while three identical bosons in three dimensions can support an infinite tower of Efimov trimers, only two universal trimers exist in the two dimensional case. We reveal how these two limits are connected by investigating the problem of three identical bosons confined by a harmonic potential along one direction. We show that the confinement breaks the discrete Efimov scaling symmetry and destroys the weakest bound trimers. However, the deepest bound Efimov trimer persists under strong confinement and hybridizes with the quasi-two-dimensional trimers, yielding a superposition of trimer configurations that effectively involves tunnelling through a short-range repulsive barrier. Our results suggest a way to use strong confinement to engineer more stable Efimov-like trimers, which have so far proved elusive.
Ultracold atomic gases have developed into prime systems for experimental studies of Efimov three-body physics and related few-body phenomena, which occur in the universal regime of resonant interactions. In the last few years, many important breakth roughs have been achieved, confirming basic predictions of universal few-body theory and deepening our understanding of such systems. We review the basic ideas along with the fast experimental developments of the field, focussing on ultracold cesium gases as a well-investigated model system. Triatomic Efimov resonances, atom-dimer Efimov resonances, and related four-body resonances are discussed as central observables. We also present some new observations of such resonances, supporting and complementing the set of available data.
We present experimental observations of a non-resonant dynamic Stark shift in strongly coupled microcavity quantum well exciton-polaritons - a system which provides a rich variety of solid-state collective phenomena. The Stark effect is demonstrated in a GaAs/AlGaAs system at 10K by femtosecond pump-probe measurements, with the blue shift approaching the meV scale for a pump fluence of 2 mJcm^-2 and 50 meV red detuning, in good agreement with theory. The energy level structure of the strongly coupled polariton Rabi-doublet remains unaffected by the blue shift. The demonstrated effect should allow generation of ultrafast density-independent potentials and imprinting well-defined phase profiles on polariton condensates, providing a powerful tool for manipulation of these condensates, similar to dipole potentials in cold atom systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا