ﻻ يوجد ملخص باللغة العربية
Super Efimov effect is a recently proposed three-body effect characterized by a double-exponential scaling, which has not been observed experimentally yet. Here, we present the general dynamic equations determining the cloud size of a scale invariant quantum gas in a time dependent harmonic trap. We show that a double-log periodicity as the hallmark of the super Efimov effect emerges when the trap frequency is decreased with a specially designed time-dependence. We also demonstrate that this dynamic super Efimov effect can be realized with realistic choices of parameters in current experiments.
The quantum mechanical three-body problem is a source of continuing interest due to its complexity and not least due to the presence of fascinating solvable cases. The prime example is the Efimov effect where infinitely many bound states of identical
We show that four heavy fermions interacting resonantly with a lighter atom (4+1 system) become Efimovian at mass ratio 13.279(2), which is smaller than the corresponding 2+1 and 3+1 thresholds. We thus predict the five-body Efimov effect for this sy
The dimensionality of a system can fundamentally impact the behaviour of interacting quantum particles. Classic examples range from the fractional quantum Hall effect to high temperature superconductivity. As a general rule, one expects confinement t
Ultracold atomic gases have developed into prime systems for experimental studies of Efimov three-body physics and related few-body phenomena, which occur in the universal regime of resonant interactions. In the last few years, many important breakth
We present experimental observations of a non-resonant dynamic Stark shift in strongly coupled microcavity quantum well exciton-polaritons - a system which provides a rich variety of solid-state collective phenomena. The Stark effect is demonstrated