ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray variability of GeV gamma-ray emitting radio galaxy NGC 1275

100   0   0.0 ( 0 )
 نشر من قبل Yasushi Fukazawa
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed Suzaku/XIS data of 2006--2015 observations of a gamma-ray emitting radio galaxy NGC 1275, and brightening of the nucleus in the X-ray band was found in 2013--2015, correlating with GeV Gamma-ray brightening. This is the first evidence of variability with correlation between GeV gamma-ray and X-ray for NGC 1275. We also analyzed Swift/XRT data of NGC 1275, and found that X-ray was flaring by a factor of $sim$5 in several days in 2006, 2010, and 2013. The X-ray spectrum during the flare was featureless and somewhat steeper with a photon index of $sim$2 against $sim$1.7 in the normal state, indicating that a synchrotron component became brighter. A large Xray to GeV gamma-ray flux ratio in the flare could be explained by the shock-in-jet scenario. On the other hand, a long-term gradual brightening of radio, X-ray, and GeV gamma-ray with a larger gamma-ray amplitude could be origin of other than internal shocks, and then we discuss some possibilities.



قيم البحث

اقرأ أيضاً

NGC 1275 is a gamma-ray-emitting radio galaxy at the center of the Perseus cluster. Its multi-wavelength spectrum is similar to that of blazers, and thus a jet-origin of gamma-ray emissions is believed. In the optical and X-ray region, NGC 1275 also shows a bright core, but their origin has not been understood, since a disk emission is not ruled out. In fact, NGC 1275 exhibits optical broad emission lines and a X-ray Fe-K line, which are typical for Seyfert galaxies. In our precious studies of NGC 1275 with Suzaku/XIS, no X-ray time variability was found from 2006 to 2011, regardless of moderate gamma-ray variability observed by {it Fermi}-LAT~cite{Yamazaki}. We have continued monitoring observations of NGC 1275 with Suzaku/XIS. In 2013-2014, MeV/GeV gams-ray flux of NGC 1275 gradually increased and reached the maximum at the beginning of 2014. Correlated with this recent gamma-ray activity, we found that X-ray flux also increased, and this is the first evidence of X-ray variability of NGC 1275. Following these results, we discuss the emission component during the time variability, but we cannot decide the origin of X-ray variability correlating with gamma-ray. Therefore, for future observation, it is important to observe NGC 1275 by using Fermi gamma-ray, XMM-Newton, NuStar, ASTRO-H X-ray, CTA TeV gamma-ray and Kanata optical telescope.
We analyze the ultraviolet (UV) and X-ray data of NGC 1275 obtained with {it Swift}/UVOT, XRT, BAT and {it Fermi} Large Area Telescope over about 10 years to investigate the origin of the nuclear emission from NGC 1275. We confirm that the UV and sof t/hard X-ray fluxes gradually increased along with the GeV gamma rays. At times, short-term variations in the UV or soft X-ray spectral regions showed rapid variations correlated with the GeV gamma-rays. However there was no significant correlation between the UV and soft X-rays. The UV spectrum had a narrow spectral shape that could be represented by single-temperature blackbody radiation. These results could possibly indicate that the long-term variability of UV and X-ray emissions is caused by the jet, while the emissions from the accretion disk contribute to the UV and X-ray bands to some extent.
The radio source 1146+596 is hosted by an elliptical/S0 galaxy NGC,3894, with a low-luminosity active nucleus. The radio structure is compact, suggesting a very young age of the jets in the system. Recently, the source has been confirmed as a high-en ergy (HE, $>0.1$,GeV) $gamma$-ray emitter, in the most recent accumulation of the {it Fermi} Large Area Telescope (LAT) data. Here we report on the analysis of the archival {it Chandra} X-ray Observatory data for the central part of the galaxy, consisting of a single 40,ksec-long exposure. We have found that the core spectrum is best fitted by a combination of an ionized thermal plasma with the temperature of $simeq 0.8$,keV, and a moderately absorbed power-law component (photon index $Gamma = 1.4pm 0.4$, hydrogen column density $N_{rm H}/10^{22}$,cm$^{-2}$,$= 2.4pm 0.7$). We have also detected the iron K$alpha$ line at $6.5pm 0.1$,keV, with a large equivalent width of EW,$= 1.0_{-0.5}^{+0.9}$,keV. Based on the simulations of the {it Chandra}s Point Spread Function (PSF), we have concluded that, while the soft thermal component is extended on the scale of the galaxy host, the hard X-ray emission within the narrow photon energy range 6.0--7.0,keV originates within the unresolved core (effectively the central kpc radius). The line is therefore indicative of the X-ray reflection from a cold neutral gas in the central regions of NGC,3894. We discuss the implications of our findings in the context of the X-ray Baldwin effect. NGC,3894 is the first young radio galaxy detected in HE $gamma$-rays with the iron K$alpha$ line.
We present intensive quasi-simultaneous X-ray and radio monitoring of the narrow line Seyfert 1 galaxy NGC 4051, over a 16 month period in 2000-2001. Observations were made with the Rossi Timing X-ray Explorer (RXTE) and the Very Large Array (VLA) at 8.4 and 4.8 GHz. In the X-ray band NGC 4051 behaves much like a Galactic black hole binary (GBH) system in a `soft-state. In such systems, there has so far been no firm evidence for an active, radio-emitting jet like those found in `hard state GBHs. VLBI observations of NGC 4051 show three co-linear compact components. This structure resembles the core and outer hot spots seen in powerful, jet-dominated, extragalactic radio sources and suggests the existence of a weak jet. Radio monitoring of the core of NGC 4051 is complicated by the presence of surrounding extended emission and by the changing array configurations of the VLA. Only in the A configuration is the core reasonably resolved. We have carefully removed the contaminations of the core by extended emission in the various arrays. The resulting lightcurve shows no sign of large amplitude variability (i.e. factor 50 %) over the 16 month period. Within the most sensitive configuration (A array) we see marginal evidence for radio core variability of ~25% (~0.12 mJy at 8.4GHz) on a 2-week timescale, correlated with X-ray variations. Even if the radio variations in NGC 4051 are real, the percentage variability is much less than in the X-ray band. Within the B configuration observations, where sensitivity is reduced, there is no sign of correlated X-ray/radio variability. The lack of radio variability in NGC 4051, which we commonly see in `hard state GBHs, may be explained by orientation effects. Another possibility is that the radio emission arises from the X-ray corona, although the linear structure of the compact radio components here is hard to explain.
We report the discovery of high-energy (E>100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma r ay Space Telescope. The positional center of the gamma-ray source is only ~3 away from the NGC 1275 nucleus, well within the 95% LAT error circle of ~5.The spatial distribution of gamma-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F_gamma = (2.10+-0.23)x 10^{-7} ph (>100 MeV) cm^{-2} s^{-1} and Gamma = 2.17+-0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period.Previous EGRET observations gave an upper limit of F_gamma < 3.72x 10 ^{-8} ph (>100 MeV) cm^{-2} s^{-1} to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا