ﻻ يوجد ملخص باللغة العربية
We review and update on a few conjectures concerning matrix permanent that are easily stated, understood, and accessible to general math audience. They are: Soules permanent-on-top conjecture${}^dagger$, Lieb permanent dominance conjecture, Bapat and Sunder conjecture${}^dagger$ on Hadamard product and diagonal entries, Chollet conjecture on Hadamard product, Marcus conjecture on permanent of permanents, and several other conjectures. Some of these conjectures are recently settled; some are still open. We also raise a few new questions for future study. (${}^dagger$conjectures have been recently settled negatively.)
Leveraging recent advances in additive combinatorics, we exhibit explicit matrices satisfying the Restricted Isometry Property with better parameters. Namely, for $varepsilon=3.26cdot 10^{-7}$, large $k$ and $k^{2-varepsilon} le Nle k^{2+varepsilon}$
The Stern poset $mathcal{S}$ is a graded infinite poset naturally associated to Sterns triangle, which was defined by Stanley analogously to Pascals triangle. Let $P_n$ denote the interval of $mathcal{S}$ from the unique element of row $0$ of Sterns
In 1989 Kalai stated the three conjectures A, B, C of increasing strength concerning face numbers of centrally symmetric convex polytopes. The weakest conjecture, A, became known as the ``$3^d$-conjecture. It is well-known that the three conjectures
For a graph $G$, let $cp(G)$ denote the minimum number of cliques of $G$ needed to cover the edges of $G$ exactly once. Similarly, let $bp_k(G)$ denote the minimum number of bicliques (i.e. complete bipartite subgraphs of $G$) needed to cover each ed
The 1-2-3 Conjecture, posed by Karo{n}ski, {L}uczak and Thomason, asked whether every connected graph $G$ different from $K_2$ can be 3-edge-weighted so that every two adjacent vertices of $G$ get distinct sums of incident weights. The 1-2 Conjecture