ﻻ يوجد ملخص باللغة العربية
We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for smile, running and jumping for highjump). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.
We study the problem of facial analysis in videos. We propose a novel weakly supervised learning method that models the video event (expression, pain etc.) as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase fo
We conduct an in-depth exploration of different strategies for doing event detection in videos using convolutional neural networks (CNNs) trained for image classification. We study different ways of performing spatial and temporal pooling, feature no
We report on CMU Informedia Labs system used in Googles YouTube 8 Million Video Understanding Challenge. In this multi-label video classification task, our pipeline achieved 84.675% and 84.662% GAP on our evaluation split and the official test set. W
This paper presents a new deep learning approach for video-based scene classification. We design a Heterogeneous Deep Discriminative Model (HDDM) whose parameters are initialized by performing an unsupervised pre-training in a layer-wise fashion usin
The progression of lung cancer implies the intrinsic ordinal relationship of lung nodules at different stages-from benign to unsure then to malignant. This problem can be solved by ordinal regression methods, which is between classification and regre