ﻻ يوجد ملخص باللغة العربية
We show that for all positive beta the semigroups of beta-Dyson Brownian motions of different dimensions are intertwined. The proof relates beta-Dyson Brownian motions directly to Jack symmetric polynomials and omits an approximation of the former by discrete space Markov chains, thereby disposing of the technical assumption beta>1 in [GS]. The corresponding results for beta-Dyson Ornstein-Uhlenbeck processes are also presented.
We consider the edge statistics of Dyson Brownian motion with deterministic initial data. Our main result states that if the initial data has a spectral edge with rough square root behavior down to a scale $eta_* geq N^{-2/3}$ and no outliers, then a
For general $beta geq 1$, we consider Dyson Brownian motion at equilibrium and prove convergence of the extremal particles to an ensemble of continuous sample paths in the limit $N to infty$. For each fixed time, this ensemble is distributed as the A
We access the edge of Gaussian beta ensembles with one spike by analyzing high powers of the associated tridiagonal matrix models. In the classical cases beta=1, 2, 4, this corresponds to studying the fluctuations of the largest eigenvalues of additi
We study a natural continuous time version of excited random walks, introduced by Norris, Rogers and Williams about twenty years ago. We obtain a necessary and sufficient condition for recurrence and for positive speed. This is analogous to results for excited (or cookie) random walks.
Let $B^{alpha_i}$ be an $(N_i,d)$-fractional Brownian motion with Hurst index ${alpha_i}$ ($i=1,2$), and let $B^{alpha_1}$ and $B^{alpha_2}$ be independent. We prove that, if $frac{N_1}{alpha_1}+frac{N_2}{alpha_2}>d$, then the intersection local time