ﻻ يوجد ملخص باللغة العربية
We consider the edge statistics of Dyson Brownian motion with deterministic initial data. Our main result states that if the initial data has a spectral edge with rough square root behavior down to a scale $eta_* geq N^{-2/3}$ and no outliers, then after times $t gg sqrt{ eta_*}$, the statistics at the spectral edge agree with the GOE/GUE. In particular we obtain the optimal time to equilibrium at the edge $t = N^{varepsilon} / N^{1/3}$ for sufficiently regular initial data. Our methods rely on eigenvalue rigidity results similar to those appearing in [Lee-Schnelli], the coupling idea of [Bourgade-ErdH{o}s-Yau-Yin] and the energy estimate of [Bourgade-ErdH{o}s-Yau].
For general $beta geq 1$, we consider Dyson Brownian motion at equilibrium and prove convergence of the extremal particles to an ensemble of continuous sample paths in the limit $N to infty$. For each fixed time, this ensemble is distributed as the A
We study the averaged products of characteristic polynomials for the Gaussian and Laguerre $beta$-ensembles with external source, and prove Pearcey-type phase transitions for particular full rank perturbations of source. The phases are characterised
Tempered fractional Brownian motion is revisited from the viewpoint of reduced fractional Ornstein-Uhlenbeck process. Many of the basic properties of the tempered fractional Brownian motion can be shown to be direct consequences or modifications of t
We define kinetic Brownian motion on the diffeomorphism group of a closed Riemannian manifold, and prove that it provides an interpolation between the hydrodynamic flow of a fluid and a Brownian-like flow.
We access the edge of Gaussian beta ensembles with one spike by analyzing high powers of the associated tridiagonal matrix models. In the classical cases beta=1, 2, 4, this corresponds to studying the fluctuations of the largest eigenvalues of additi