ﻻ يوجد ملخص باللغة العربية
A favorable population schedule for the entire potential human family is sought, under the overlapping generations framework, by treating population (or fertility) as a planning variable in a dynamical social welfare maximization context. The utilitarian and maximin social welfare functions are examined, with zero future discounting, while infinity in the maximand is circumvented by introducing the depletion of energy resources and its postponement through technological innovations. The model is formulated as a free-horizon dynamical planning problem, solved via a non-linear optimizer. Under exploratory scenarios, we visualize the potential trade-offs between the two welfare criteria.
In this paper, we investigate dynamic optimization problems featuring both stochastic control and optimal stopping in a finite time horizon. The paper aims to develop new methodologies, which are significantly different from those of mixed dynamic op
This paper studies a dynamic optimal reinsurance and dividend-payout problem for an insurer in a finite time horizon. The goal of the insurer is to maximize its expected cumulative discounted dividend payouts until bankruptcy or maturity which comes
In this paper we propose and solve an optimal dividend problem with capital injections over a finite time horizon. The surplus dynamics obeys a linearly controlled drifted Brownian motion that is reflected at the origin, dividends give rise to time-d
We study a finite horizon optimal contracting problem of a risk-neutral principal and a risk-averse agent who receives a stochastic income stream when the agent is unable to make commitments. The problem involves an infinite number of constraints at
Intelligent mobile sensors, such as uninhabited aerial or underwater vehicles, are becoming prevalent in environmental sensing and monitoring applications. These active sensing platforms operate in unsteady fluid flows, including windy urban environm