ﻻ يوجد ملخص باللغة العربية
By spectrally hole burning an inhomogeneously broadened ensemble of ions while applying a controlled perturbation, one can obtain spectral holes that are functionalized for maximum sensitivity to different perturbations. We propose to use such hole burnt structures for the dispersive optical interaction with rare-earth ion dopants whose frequencies are sensitive to crystal strain due to the bending motion of a crystal cantilever. A quantitative analysis shows that good optical sensitivity to the bending motion is obtained if a magnetic field gradient is applied across the crystal during hole burning, and that the resulting opto-mechanical coupling strength is sufficient for observing quantum features such as zero point vibrations.
We present a new optomechanical device where the motion of a micromechanical membrane couples to a microwave resonance of a three-dimensional superconducting cavity. With this architecture, we realize ultrastrong parametric coupling, where the coupli
We perform an investigation into the properties of Pr3+:Y2SiO5 whispering gallery mode resonators as a first step towards achieving the strong coupling regime of cavity QED with rare-earth-ion doped crystals. Direct measurement of cavity QED paramete
Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap cry
Due to inhomogeneous broadening, the absorption lines of rare-earth-ion dopands in crystals are many order of magnitudes wider than the homogeneous linewidths. Several ways have been proposed to use ions with different inhomogeneous shifts as qubit r
Quantum light-matter interfaces (QLMIs) connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching, and studies of fundamental physics. Rare-earth-ion (REI) doped cry