ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

155   0   0.0 ( 0 )
 نشر من قبل Andrei Faraon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum light-matter interfaces (QLMIs) connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching, and studies of fundamental physics. Rare-earth-ion (REI) doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium REIs to photonic nano-cavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled REIs is performed via photon echoes. Long optical coherence times (T2~100 microseconds) and small inhomogeneous broadening are measured for the cavity-coupled REIs, thus demonstrating their potential for on-chip scalable QLMIs.



قيم البحث

اقرأ أيضاً

Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap cry stals to enable or improve persistent spectral hole-burning and coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and optical quantum memories. As an example, we discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the convenient telecommunication band, and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y2SiO5, a widely-used material in current quantum memory research.
We analyze the coupling of atoms or atom-like emitters to nanophotonic waveguides in the presence of propagating acoustic waves. Specifically, we show that strong index modulations induced by such waves can drastically modify the effective photonic d ensity of states and thereby influence the strength, the directionality, as well as the overall characteristics of photon emission and absorption processes. These effects enable a complete dynamical control of light-matter interactions in waveguide structures, which even in a two dimensional system can be used to efficiently exchange individual photons along selected directions and with a very high fidelity. Such a quantum acousto-optical control provides a versatile tool for various quantum networking applications ranging from the distribution of entanglement via directional emitter-emitter interactions to the routing of individual photonic quantum states via acoustic conveyor belts.
Numerous bulk crystalline materials exhibit attractive nonlinear and luminescent properties for classical and quantum optical applications. A chip-scale platform for high quality factor optical nanocavities in these materials will enable new optoelec tronic devices and quantum light-matter interfaces. In this article, photonic crystal nanobeam resonators fabricated using focused ion beam milling in bulk insulators, such as rare-earth doped yttrium orthosilicate and yttrium vanadate, are demonstrated. Operation in the visible, near infrared, and telecom wavelengths with quality factors up to 27,000 and optical mode volumes close to one cubic wavelength is measured. These devices enable new nanolasers, on-chip quantum optical memories, single photon sources, and non-linear devices at low photon numbers based on rare-earth ions. The techniques are also applicable to other luminescent centers and crystals.
278 - P. Siyushev , K. Xia , R. Reuter 2014
Rare-earth-doped crystals are excellent hardware for quantum storage of optical information. Additional functionality of these materials is added by their waveguiding properties allowing for on-chip photonic networks. However, detection and coherent properties of rare-earth single-spin qubits have not been demonstrated so far. Here, we present experimental results on high-fidelity optical initialization, effcient coherent manipulation, and optical readout of a single electron spin of Ce$^{3+}$ ion in a YAG crystal. Under dynamic decoupling, spin coherence lifetime reaches $T_2$=2 ms and is almost limited by the measured spin-lattice relaxation time $T_1$=3.8 ms. Strong hyperfine coupling to aluminium nuclear spins suggests that cerium electron spins can be exploited as an interface between photons and long-lived nuclear spin memory. Combined with high brightness of Ce$^{3+}$ emission and a possibility of creating photonic circuits out of the host material, this makes cerium spins an interesting option for integrated quantum photonics.
The success of the emerging field of solid-state optical quantum information processing (QIP) critically depends on the access to resonant optical materials. Rare-earth ions (REIs) are suitable candidates for QIP protocols due to their extraordinary photo-physical and magnetic quantum properties such as long optical and spin coherence lifetimes ($T_2$). However, molecules incorporating REIs, despite having advantageous properties such as atomically exact quantum tunability, inherent scalability, and large portability, have not yet been studied for QIP applications. As a first testimony of the usefulness of REI molecules for optical QIP applications, we demonstrate in this study that narrow spectral holes can be burned in the inhomogeneously broadened $^5$D$_0to^7$F$_0$ optical transition of a binuclear Eu(III) complex, rendering a homogeneous linewidth ($Gamma_h$) = 22 $pm$ 1 MHz, which translates as $T_2 = 14.5$ $pm$ 0.7 ns at 1.4 K. Moreover, long-lived spectral holes are observed, demonstrating efficient polarization of Eu(III) ground state nuclear spins, a fundamental requirement for all-optical spin initialization and addressing. These results elucidate the usefulness of REI-based molecular complexes as versatile coherent light-spin interfaces for applications in quantum communications and processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا