ﻻ يوجد ملخص باللغة العربية
This paper concerns branching simulation for weighted Kripke structures with parametric weights. Concretely, we consider a weighted extension of branching simulation where a single transitions can be matched by a sequence of transitions while preserving the branching behavior. We relax this notion to allow for a small degree of deviation in the matching of weights, inducing a directed distance on states. The distance between two states can be used directly to relate properties of the states within a sub-fragment of weighted CTL. The problem of relating systems thus changes to minimizing the distance which, in the general parametric case, corresponds to finding suitable parameter valuations such that one system can approximately simulate another. Although the distance considers a potentially infinite set of transition sequences we demonstrate that there exists an upper bound on the length of relevant sequences, thereby establishing the computability of the distance.
Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by w
We propose a way of reasoning about minimal and maximal values of the weights of transitions in a weighted transition system (WTS). This perspective induces a notion of bisimulation that is coarser than the classic bisimulation: it relates states tha
We present an algorithm to compute exact literal-weighted model counts of Boolean formulas in Conjunctive Normal Form. Our algorithm employs dynamic programming and uses Algebraic Decision Diagrams as the primary data structure. We implement this tec
In this paper, we generalize the combinatorial Laplace operator of Horak and Jost by introducing the $phi$-weighted coboundary operator induced by a weight function $phi$. Our weight function $phi$ is a generalization of Dawsons weighted boundary map
We propose a unifying dynamic-programming framework to compute exact literal-weighted model counts of formulas in conjunctive normal form. At the center of our framework are project-join trees, which specify efficient project-join orders to apply add