ترغب بنشر مسار تعليمي؟ اضغط هنا

NNLO QCD corrections to Higgs boson production at large transverse momentum

104   0   0.0 ( 0 )
 نشر من قبل Xuan Chen
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to- leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.



قيم البحث

اقرأ أيضاً

We calculate the full one-loop electroweak radiative corrections to the cross section of single W-boson inclusive hadroproduction at finite transverse momentum (p_T). This includes the O(alpha) corrections to W+j production, the O(alpha_s) correction s to W+gamma production, and the tree-level contribution from W+j photoproduction with one direct or resolved photon in the initial state. We present the integrated cross section as a function of a minimum-p_T cut as well as the p_T distribution for the experimental conditions at the Fermilab Tevatron and the CERN LHC and estimate the theoretical uncertainties.
We calculate the full one-loop electroweak radiative corrections, of ${cal O}(alpha^2alpha_s)$, to the cross section of single $Z$-boson inclusive hadroproduction at finite transverse momentum ($p_T$). This includes the ${cal O}(alpha)$ corrections t o $Z+j$ production, the ${cal O}(alpha_s)$ corrections to $Z+gamma$ production, and certain QCD-electroweak interference contributions involving a single quark trace. We recover the QCD and purely weak corrections and study the QED corrections and the QCD-electroweak interference contributions for the first time. We also consider direct and resolved photoproduction in elastic and inelastic scattering. We present $p_T$ and rapidity distributions for the experimental conditions at the Fermilab Tevatron and the CERN LHC and assess the significance of the various contributions.
259 - S. Actis , G. Passarino , C. Sturm 2008
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass sch eme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.
The transverse momentum spectra of weak gauge bosons and their ratios probe the underlying dynamics and are crucial in testing our understanding of the Standard Model. They are an essential ingredient in precision measurements, such as the $mathrm{W} $-boson mass extraction. To fully exploit the potential of the LHC data, we compute the second-order (NNLO) QCD corrections to the inclusive-$p_mathrm{T}^mathrm{W}$ spectrum as well as to the ratios of spectra for $mathrm{W}^-/mathrm{W}^+$ and $mathrm{Z}/mathrm{W}$. We find that the inclusion of NNLO QCD corrections considerably improves the theoretical description of the experimental CMS data and results in a substantial reduction of the residual scale uncertainties.
We present the calculation of next-to-next-to-leading order (NNLO) corrections in perturbative QCD for the production of a Higgs boson decaying into a pair of bottom quarks in association with a leptonically decaying weak vector boson: $mathrm{pp} to V mathrm{H} + X to ellbar{ell};mathrm{bbar{b}} + X$. We consider the corrections to both the production and decay sub-processes, retaining a fully differential description of the final state including off-shell propagators of the Higgs and vector boson. The calculation is carried out using the antenna subtraction formalism and is implemented in the NNLOJET framework. Clustering and identification of $mathrm{b}$-jets is performed with the flavour-$k_t$ algorithm and results for fiducial cross sections and distributions are presented for the LHC at $sqrt{s}=13;text{TeV}$. We assess the residual theory uncertainty by varying the production and decay scales independently and provide scale uncertainty bands in our results, yielding percent-level accurate predictions for observables in this Higgs production mode computed at NNLO. Confronting a naive perturbative expansion of the cross section against the customary re-scaling procedure to a fixed branching ratio reveals that starting from NNLO, the latter could be inadequate in estimating missing higher-order effects through scale variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا