ترغب بنشر مسار تعليمي؟ اضغط هنا

NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders

253   0   0.0 ( 0 )
 نشر من قبل Stefano Actis
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.



قيم البحث

اقرأ أيضاً

285 - C. Bernaciak , D. Wackeroth 2012
The precision measurement of the mass of the $W$ boson is an important goal of the Fermilab Tevatron and the CERN Large Hadron Collider (LHC). It requires accurate theoretical calculations which incorporate both higher-order QCD and electroweak corre ctions, and also provide an interface to parton-shower Monte Carlo programs which make it possible to realistically simulate experimental data. In this paper, we present a combination of the full ${cal O}(alpha)$ electroweak corrections of {tt WGRAD2}, and the next-to-leading order QCD radiative corrections to $Wtoell u$ production in hadronic collisions in a single event generator based on the {tt POWHEG} framework, which is able to interface with the parton-shower Monte Carlo programs {tt Pythia} and {tt Herwig}. Using this new combined QCD+EW Monte Carlo program for $W$ production we provide numerical results for total cross sections and kinematic distributions of relevance to the $W$ mass measurement at the Tevatron and the LHC for the processes $pp,pbar p to W^pm to mu^pm u_mu$. In particular, we discuss the impact of EW corrections in the presence of QCD effects when including detector resolution effects.
Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leadi ng top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.
159 - William B. Kilgore 2002
I report on a calculation of the inclusive Higgs boson production cross section at hadron colliders at next-to-next-to-leading order in QCD. The result is computed as an expansion about the threshold region. By continuing the expansion to very high o rder, we map the result onto basis functions and obtain the result in closed analytic form.
We report on our recent work on electroweak corrections to $tbar{t}$ production at hadron colliders. Specifically, we discuss the weak-interaction contributions to the top quark transverse momentum and $t bar{t}$ invariant mass distributions and an induced parity-violating top-spin asymmetry.
207 - T. Binoth , T. Gleisberg , S. Karg 2009
A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new p hysics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا