ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Coordinated Corona Graphs: a model for complex networks

77   0   0.0 ( 0 )
 نشر من قبل Rohan Sharma
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, real world networks having constant/shrinking diameter along with power-law degree distribution are observed and investigated in literature. Taking an inspiration from these findings, we propose a deterministic complex network model, which we call Self-Coordinated Corona Graphs (SCCG), based on the corona product of graphs. As it has also been established that self coordination/organization of nodes gives rise to emergence of power law in degree distributions of several real networks, the networks in the proposed model are generated by the virtue of self coordination of nodes in corona graphs. Alike real networks, the SCCG inherit motifs which act as the seed graphs for the generation of SCCG. We also analytically prove that the power law exponent of SCCG is approximately $2$ and the diameter of SCCG produced by a class of motifs is constant. Finally, we compare different properties of the proposed model with that of the BA and Pseudofractal scale-free models for complex networks.



قيم البحث

اقرأ أيضاً

Many graph products have been applied to generate complex networks with striking properties observed in real-world systems. In this paper, we propose a simple generative model for simplicial networks by iteratively using edge corona product. We prese nt a comprehensive analysis of the structural properties of the network model, including degree distribution, diameter, clustering coefficient, as well as distribution of clique sizes, obtaining explicit expressions for these relevant quantities, which agree with the behaviors found in diverse real networks. Moreover, we obtain exact expressions for all the eigenvalues and their associated multiplicities of the normalized Laplacian matrix, based on which we derive explicit formulas for mixing time, mean hitting time and the number of spanning trees. Thus, as previous models generated by other graph products, our model is also an exactly solvable one, whose structural properties can be analytically treated. More interestingly, the expressions for the spectra of our model are also exactly determined, which is sharp contrast to previous models whose spectra can only be given recursively at most. This advantage makes our model a good test-bed and an ideal substrate network for studying dynamical processes, especially those closely related to the spectra of normalized Laplacian matrix, in order to uncover the influences of simplicial structure on these processes.
We introduce Forman-Ricci curvature and its corresponding flow as characteristics for complex networks attempting to extend the common approach of node-based network analysis by edge-based characteristics. Following a theoretical introduction and mat hematical motivation, we apply the proposed network-analytic methods to static and dynamic complex networks and compare the results with established node-based characteristics. Our work suggests a number of applications for data mining, including denoising and clustering of experimental data, as well as extrapolation of network evolution.
A wide variety of complex networks (social, biological, information etc.) exhibit local clustering with substantial variation in the clustering coefficient (the probability of neighbors being connected). Existing models of large graphs capture power law degree distributions (Barabasi-Albert) and small-world properties (Watts-Strogatz), but only limited clustering behavior. We introduce a generalization of the classical ErdH{o}s-Renyi model of random graphs which provably achieves a wide range of desired clustering coefficient, triangle-to-edge and four-cycle-to-edge ratios for any given graph size and edge density. Rather than choosing edges independently at random, in the Random Overlapping Communities model, a graph is generated by choosing a set of random, relatively dense subgraphs (communities). We discuss the explanatory power of the model and some of its consequences.
Understanding structural controllability of a complex network requires to identify a Minimum Input nodes Set (MIS) of the network. It has been suggested that finding an MIS is equivalent to computing a maximum matching of the network, where the unmat ched nodes constitute an MIS. However, maximum matching of a network is often not unique, and finding all MISs may provide deep insights to the controllability of the network. Finding all possible input nodes, which form the union of all MISs, is computationally challenging for large networks. Here we present an efficient enumerative algorithm for the problem. The main idea is to modify a maximum matching algorithm to make it efficient for finding all possible input nodes by computing only one MIS. We rigorously proved the correctness of the new algorithm and evaluated its performance on synthetic and large real networks. The experimental results showed that the new algorithm ran several orders of magnitude faster than the existing method on large real networks.
In this paper we introduce a family of planar, modular and self-similar graphs which have small-world and scale-free properties. The main parameters of this family are comparable to those of networks associated to complex systems, and therefore the g raphs are of interest as mathematical models for these systems. As the clustering coefficient of the graphs is zero, this family is an explicit construction that does not match the usual characterization of hierarchical modular networks, namely that vertices have clustering values inversely proportional to their degrees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا