ﻻ يوجد ملخص باللغة العربية
This text presents several aspects of the theory of equisingularity of complex analytic spaces from the standpoint of Whitney conditions. The goal is to describe from the geometrical, topological, and algebraic viewpoints a canonical locally finite partition of a reduced complex analytic space $X$ into nonsingular strata with the property that the local geometry of $X$ is constant on each stratum. Local polar varieties appear in the title because they play a central role in the unification of viewpoints. The geometrical viewpoint leads to the study of spaces of limit directions at a given point of $Xsubset C^n$ of hyperplanes of $C^n$ tangent to $X$ at nonsingular points, which in turn leads to the realization that the Whitney conditions, which are used to define the stratification, are in fact of a Lagrangian nature. The local polar varieties are used to analyze the structure of the set of limit directions of tangent hyperplanes. This structure helps in particular to understand how a singularity differs from its tangent cone, assumed to be reduced. The multiplicities of local polar varieties are related to local topological invariants, local vanishing Euler-Poincare characteristics, by a formula which turns out to contain, in the special case where the singularity is the vertex of the cone over a reduced projective variety, a Plucker-type formula for the degree of the dual of a projective variety. The degree of the dual of a projective variety is expressed in terms of Euler-Poincare characteristics attached to the minimal Whitney stratification of the variety.
In this paper we generalize the definitions of singularities of pairs and multiplier ideal sheaves to pairs on arbitrary normal varieties, without any assumption on the variety being Q-Gorenstein or the pair being log Q-Gorenstein. The main features
We give a characterizaton of smooth ample Hypersurfaces in Abelian Varieties and also describe an irreducible connected component of their moduli space: it consists of the Hypersurfaces of a given polarization type, plus the iterated univariate cover
Campana introduced the class of special varieties as the varieties admitting no Bogomolov sheaves i.e. rank one coherent subsheaves of maximal Kodaira dimension in some exterior power of the cotangent bundle. Campana raised the question if one can re
We give a version in characteristic $p>0$ of Mumfords theorem characterizing a smooth complex germ of surface $(X,x)$ by the triviality of the topological fundamental group of $U=Xsetminus {x}$. This note relies on discussions the authors had durin
We describe the birational and the biregular theory of cyclic and Abelian coverings between real varieties.