We give a characterizaton of smooth ample Hypersurfaces in Abelian Varieties and also describe an irreducible connected component of their moduli space: it consists of the Hypersurfaces of a given polarization type, plus the iterated univariate cover
ings of normal type (of the same polarization type). The above manifolds yield also a connected component of the open set of Teichmuller space consisting of Kahler complex structures.
Let $X$ be a polarized abelian variety over a field $K$. Let $O$ be a ring with an involution that acts on $X$ and this action is compatible with the polarization. We prove that the natural action of $O$ on $(X times X^t)^4$ is compatible with a certain principal polarization.
Campana introduced the class of special varieties as the varieties admitting no Bogomolov sheaves i.e. rank one coherent subsheaves of maximal Kodaira dimension in some exterior power of the cotangent bundle. Campana raised the question if one can re
place the Kodaira dimension by the numerical dimension in this characterization. We answer partially this question showing that a projective manifold admitting a rank one coherent subsheaf of the cotangent bundle with numerical dimension 1 is not special. We also establish the analytic characterization with the non-existence of Zariski dense entire curve and the arithmetic version with non-potential density in the (split) function field setting. Finally, we conclude with a few comments for higher codimensional foliations which may provide some evidence towards a generalization of the aforementioned results.
A group $G$ is called Jordan if there is a positive integer $J=J_G$ such that every finite subgroup $mathcal{B}$ of $G$ contains a commutative subgroup $mathcal{A}subset mathcal{B}$ such that $mathcal{A}$ is normal in $mathcal{B}$ and the index $[mat
hcal{B}:mathcal{A}] le J$ (V.L. Popov). In this paper we deal with Jordaness properties of the groups $Bir(X)$ of birational automorphisms of irreducible smooth projective varieties $X$ over an algebraically closed field of characteristic zero. It is known (Yu. Prokhorov - C. Shramov) that $Bir(X)$ is Jordan if $X$ is non-uniruled. On the other hand, the second named author proved that $Bir(X)$ is not Jordan if $X$ is birational to a product of the projective line and a positive-dimensional abelian variety. We prove that $Bir(X)$ is Jordan if (uniruled) $X$ is a conic bundle over a non-uniruled variety $Y$ but is not birational to a product of $Y$ and the projective line. (Such a conic bundle exists only if $dim(Y)ge 2$.) When $Y$ is an abelian surface, this Jordaness property result gives an answer to a question of Prokhorov and Shramov.
Consider a family f:A --> U of g-dimensional abelian varieties over a quasiprojective manifold U. Suppose that the induced map from U to the moduli scheme of polarized abelian varieties is generically finite and that there is a projective manifold Y,
containing U as the complement of a normal crossing divisor S, such that the sheaf of logarithmic one forms is nef and that its determinant is ample with respect to U. We characterize whether $U$ is a Shimura variety by numerical data attached to the variation of Hodge structures, rather than by properties of the map from U to the moduli scheme or by the existence of CM points. More precisely, we show that U is a Shimura variety, if and only if two conditions hold. First, each irreducible local subsystem V of the complex weight one variation of Hodge structures is either unitary or satisfies the Arakelov equality. Secondly, for each factor M in the universal cover of U whose tangent bundle behaves like the one of a complex ball, an iterated Kodaira-Spencer map associated with V has minimal possible length in the direction of M.