ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable $varphi$ Josephson Junction ratchet

64   0   0.0 ( 0 )
 نشر من قبل Edward Goldobin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate experimentally the operation of a deterministic Josephson ratchet with tunable asymmetry. The ratchet is based on a $varphi$ Josephson junction with a ferromagnetic barrier operating in the underdamped regime. The system is probed also under the action of an additional dc current, which acts as a counter force trying to stop the ratchet. Under these conditions the ratchet works against the counter force, thus producing a non-zero output power. Finally, we estimate the efficiency of the $varphi$ Josephson junction ratchet.



قيم البحث

اقرأ أيضاً

The $varphi$ Josephson junction has a doubly degenerate ground state with the Josephson phases $pmvarphi$. We demonstrate the use of such a $varphi$ Josephson junction as a memory cell (classical bit), where writing is done by applying a magnetic fie ld and reading by applying a bias current. In the store state, the junction does not require any bias or magnetic field, but just needs to stay cooled for permanent storage of the logical bit. Straightforward integration with Rapid Single Flux Quantum logic is possible.
We consider a $varphi$ Josephson junction, which has a bistable zero-voltage state with the stationary phases $psi=pmvarphi$. In the non-zero voltage state the phase moves viscously along a tilted periodic double-well potential. When the tilting is r educed quasistatically, the phase is retrapped in one of the potential wells. We study the viscous phase dynamics to determine in which well ($-varphi$ or $+varphi$) the phase is retrapped for a given damping, when the junction returns from the finite-voltage state back to zero-voltage state. In the limit of low damping the $varphi$ Josephson junction exhibits a butterfly effect --- extreme sensitivity of the destination well on damping. This leads to an impossibility to predict the destination well.
We consider an asymmetric 0-pi Josephson junction consisting of 0 and pi regions of different lengths L_0 and L_pi. As predicted earlier this system can be described by an effective sine-Gordon equation for the spatially averaged phase psi so that th e effective current-phase relation of this system includes a emph{negative} second harmonic ~sin(2 psi). If its amplitude is large enough, the ground state of the junction is doubly degenerate psi=pmvarphi, where varphi depends on the amplitudes of the first and second harmonics. We study the behavior of such a junction in an applied magnetic field H and demonstrate that H induces an additional term ~H cos(psi) in the effective current-phase relation. This results in a non-trivial ground state emph{tunable} by magnetic field. The dependence of the critical current on H allows for revealing the ground state experimentally.
140 - M. Zgirski , M. Foltyn , A. Savin 2017
We demonstrate a novel approach to thermometry at the nanoscale exploiting a superconducting weak link. Such a weak link probed with nanosecond current pulses serves as a temperature sensing element and, due to the fast inherent dynamics, is capable of delivering unprecedented temporal resolution. We employ the thermometer to measure dynamic temperature of electrons in a long superconducting wire relaxing to the bath temperature after application of the heating pulse. Our measurement delivers nanosecond resolution thus providing the proof-of-concept of the fastest-todate all-solid-state thermometry. Our method improves the state-of-the-art temporal resolution of mesoscopic thermometry by at least two orders of magnitude, extending temporal resolution of existing experiments and introducing new possibilities for ultra-sensitive calorimeters and radiation detectors.
Transport is called nonreciprocal when not only the sign, but also the absolute value of the current, depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, e.g., by the interplay of spin-orbit coupling and magnetic field. So far, observation of nonreciprocity was always tied to resistivity, and dissipationless nonreciprocal circuit elements were elusive. Here, we engineer fully superconducting nonreciprocal devices based on highly-transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link nonreciprocal supercurrent to the asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient for the first time. A semi-quantitative model well explains the main features of our experimental data. Nonreciprocal Josephson junctions have the potential to become for superconducting circuits what $pn$-junctions are for traditional electronics, opening the way to novel nondissipative circuit elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا