ﻻ يوجد ملخص باللغة العربية
We consider an asymmetric 0-pi Josephson junction consisting of 0 and pi regions of different lengths L_0 and L_pi. As predicted earlier this system can be described by an effective sine-Gordon equation for the spatially averaged phase psi so that the effective current-phase relation of this system includes a emph{negative} second harmonic ~sin(2 psi). If its amplitude is large enough, the ground state of the junction is doubly degenerate psi=pmvarphi, where varphi depends on the amplitudes of the first and second harmonics. We study the behavior of such a junction in an applied magnetic field H and demonstrate that H induces an additional term ~H cos(psi) in the effective current-phase relation. This results in a non-trivial ground state emph{tunable} by magnetic field. The dependence of the critical current on H allows for revealing the ground state experimentally.
We demonstrate experimentally the operation of a deterministic Josephson ratchet with tunable asymmetry. The ratchet is based on a $varphi$ Josephson junction with a ferromagnetic barrier operating in the underdamped regime. The system is probed also
In this work we study the magnetic remanence exhibited by Josephson junction arrays in response to an excitation with an AC magnetic field. The effect, predicted by numerical simulations to occur in a range of temperatures, is clearly seen in our tri
An extended Josephson junction consists of two superconducting electrodes that are separated by an insulator and it is therefore also a microwave cavity. The superconducting phase difference across the junction determines the supercurrent as well as
We demonstrate a novel approach to thermometry at the nanoscale exploiting a superconducting weak link. Such a weak link probed with nanosecond current pulses serves as a temperature sensing element and, due to the fast inherent dynamics, is capable
The Josephson current in a diffusive superconductor/ferromagnet/superconductor junction with precessing magnetization is calculated within the quasiclassical theory of superconductivity. When the junction is phase-biased, a stationary current (withou