ﻻ يوجد ملخص باللغة العربية
We have observed a super-giant (~10,000,000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.
Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS$_{2
We study InAs nanowire resonators fabricated on sapphire substrate with a local gate configuration. The key advantage of using an insulating sapphire substrate is that it results in a reduced parasitic capacitance thus allowing both wide bandwidth ac
The monochromatic and geometrically anisotropic acoustic field generated by 400 nm and 120 nm diameter copper nanowires simply dropped on a 10 $mu$m silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pu
Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due t
We study hysteretic magnetoresistance in InSb nanowires due to stray magnetic fields from CoFe micromagnets. Devices without any ferromagnetic components show that the magnetoresistance of InSb nanowires commonly exhibits either a local maximum or lo