ﻻ يوجد ملخص باللغة العربية
We consider the coupling of the magnons in both quantum ferromagnets and antiferromagnets to the longitudinal order-parameter fluctuations, and the resulting nonanalytic behavior of the longitudinal susceptibility. In classical magnets it is well known that long-range correlations induced by the magnons lead to a singular wave-number dependence of the form $1/k^{4-d}$ in all dimensions 2<d<4, for both ferromagnets and antiferromagnets. At zero temperature we find a profound difference between the two cases. Consistent with naive power counting, the longitudinal susceptibility in a quantum antiferromagnet scales as $k^{d-3}$ for 1<d<3, whereas in a quantum ferromagnet the analogous result, $k^{d-2}$, is absent due to a zero scaling function. This absence of a nonanalyticity in the longitudinal susceptibility is due to the lack of magnon number fluctuations in the ground state of a quantum ferromagnet; correlation functions that are sensitive to other fluctuations do exhibit the behavior predicted by simple power counting. Also of interest is the dynamical behavior as expressed in the longitudinal part of the dynamical structure factor, which is directly measurable via neutron scattering. For both ferromagnets and antiferromagnets there is a logarithmic singularity at the magnon frequency with a prefactor that vanishes as $Tto 0$. In the antiferromagnetic case there also is a nonzero contribution at T=0 that is missing for ferromagnets. Magnon damping due to quenched disorder restores the expected scaling behavior of the longitudinal susceptibility in the ferromagnetic case; it scales as $k^{d-2}$ if the order parameter is not conserved, or as $k^d$ if it is. Detailed predictions are made for both two- and three-dimensional systems at both T=0 and in the limit of low temperatures, and the physics behind the various nonanalytic behaviors is discussed.
An initially homogeneous freely evolving fluid of inelastic hard spheres develops inhomogeneities in the flow field (vortices) and in the density field (clusters), driven by unstable fluctuations. Their spatial correlations, as measured in molecular
We examine the Detrended Fluctuation Analysis (DFA), which is a well-established method for the detection of long-range correlations in time series. We show that deviations from scaling that appear at small time scales become stronger in higher order
We consider near-critical two-dimensional statistical systems at phase coexistence on the half plane with boundary conditions leading to the formation of a droplet separating coexisting phases. General low-energy properties of two-dimensional field t
We consider a velocity field with linear viscous interactions defined on a one dimensional lattice. Brownian baths with different parameters can be coupled to the boundary sites and to the bulk sites, determining different kinds of non-equilibrium st
We demonstrate how quantum entanglement can be directly witnessed in the quasi-1D Heisenberg antiferromagnet KCuF$_3$. We apply three entanglement witnesses --- one-tangle, two-tangle, and quantum Fisher information --- to its inelastic neutron spect