ﻻ يوجد ملخص باللغة العربية
To study the influence of microwave irradiation on two-dimensional electrons, we apply a method based on capacitance measurements in GaAs quantum well samples where the gate covers a central part of the layer. We find that the capacitance oscillations at high magnetic fields, caused by the oscillations of thermodynamic density of states, are not essentially modified by microwaves. However, in the region of fields below 1 Tesla, we observe another set of oscillation, with the period and the phase identical to those of microwave induced resistance oscillations. The phenomenon of microwave induced capacitance oscillations is explained in terms of violation of the Einstein relation between conductivity and the diffusion coefficient in the presence of microwaves, which leads to a dependence of the capacitor charging on the anomalous conductivity. We also observe microwave-induced oscillations in the capacitive response to periodic variations of external heating. These oscillations appear due to the thermoelectric effect and are in antiphase with microwave induced resistance oscillations because of the Corbino-like geometry of our experimental setup.
High-mobility 2D electron systems in a perpendicular magnetic field exhibit zero resistance states (ZRS) when driven with microwave radiation. We study the nonequilibrium phase transition into this ZRS using phenomenological equations of motion to de
We study theoretically transverse photoconductivity induced by circularly polarized radiation, i.e. the photovoltaic Hall effect, and linearly polarized radiation causing intraband optical transitions in two-dimensional electron gas (2DEG). We develo
We study the coupled dynamics of spin and charge currents in a two-dimensional electron gas in the transport diffusive regime. For systems with inversion symmetry there are established relations between the spin Hall effect, the anomalous Hall effect
We provide a theoretical framework for the electric field control of the electron spin in systems with diffusive electron motion. The approach is valid in the experimentally important case where both intrinsic and extrinsic spin-orbit interaction in
By measuring the thermoelectric effect in high-mobility quantum wells with two occupied subbands in perpendicular magnetic field, we detect magnetophonon oscillations due to interaction of electrons with acoustic phonons. These oscillations contain s